, Volume 37, Issue 3, pp 423–435 | Cite as

CO2 Fluxes from Different Vegetation Communities on a Peatland Ecosystem

  • Manuel AcostaEmail author
  • Radek Juszczak
  • Bogdan Chojnicki
  • Marian Pavelka
  • Kateřina Havránková
  • Jacek Lesny
  • Lenka Krupková
  • Marek Urbaniak
  • Kateřina Machačová
  • Janusz Olejnik
Original Research


Although most studies find temperature, soil moisture and water table to be important environmental factors that affect peatland carbon dynamics, the role of vegetation communities has been investigated less. Therefore, this study investigates whether peatland ecosystems produce heterogeneous CO2 fluxes due to differences in vegetation community. In addition, the study also examines which major environmental factors influence this vegetation. To achieve the aims of this study, four sites with different vegetation communities were established in a semi-natural peatland ecosystem in Poland. CO2 flux measurements were carried out using a closed dynamic chamber system. Measurement campaigns were carried out from April until December 2008, every 2–3 weeks. Measured ecosystem respiration (Reco) and net ecosystem exchange (NEE) rates showed daily and seasonal variation at all investigated sites. Reco presented a strong dependence on soil temperature at the 5 cm depth, while NEE showed a strong dependence on solar radiation. The mean temperature sensitivity (Q10) for the four sites ranged between 3.17 and 8.3. The highest NEE and Reco values were obtained at the site represented by Caricetum elatae and the lowest NEE and Reco at the site represented by Calamagrostietum neglectae.


Chamber method Ecosystem respiration Net ecosystem exchange Q10 – temperature sensitivity, LAI – leaf area index 



This work was supported by the EU FP6 Project “GREENFLUX”, MTKD-CT-2006-042445, the project of Polish Ministry of Science No. 752/N-COST/2010/0 and by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program I (NPU I), grant number LO1415. We would like to thank Mr. Ryan McGloin for the linguistic revision.


  1. Alm J, Talanov A, Saarnio S, Silvola J, Ikkonen E, Aaltonen H, Nykanen H, Martikainen PJ (1997) Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 110:423–431CrossRefPubMedGoogle Scholar
  2. Andersen R, Poulin M, Bocard D, Laiho R, Laine J, Vasander H, Tuittila ET (2011) Environmental control and spatial structure in peatland vegetation. Journal of Vegetation Science 22:878–890CrossRefGoogle Scholar
  3. Barber KE (1981) Peat stratigraphy and climatic change: a palaeoecological test of the theory of cyclic peat bog regeneration. Balkema, RotterdamGoogle Scholar
  4. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572CrossRefGoogle Scholar
  5. Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change 3:273–277CrossRefGoogle Scholar
  6. Breeuwer A, Heijmans M, Robroek BJM, Berendse F (2010) Field simulation of global change: transplanting northern bog mesocosms southward. Ecosystems 13:712–726CrossRefGoogle Scholar
  7. Bubier JL (1995) The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. Journal of Ecology 83:403–420CrossRefGoogle Scholar
  8. Bubier JL, Crill PM, Moore TR, Savage K, Varner RK (1998) Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochemical Cycles 12:703–714CrossRefGoogle Scholar
  9. Bubier J, Moore TR, Bledzki L (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology 13:1168–1189CrossRefGoogle Scholar
  10. Chojnicki B, Michalak M, Acosta M, Juszczak R, Augustin J, Drösler M, Olejnik J (2010) Measurements of carbon dioxide fluxes by chamber method at the Rzecin wetland ecosystem, Poland. Polish Journal of Environmental Studies 19(2):283–291Google Scholar
  11. Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystems of the world, 4A. Mires: swamp, bog, fen and moor, Generall studies. Elsevier, Amsterdam, pp 159–224Google Scholar
  12. Drösler M (2005) Trace gas exchange and climatic relevance of bog ecosystem, Southern Germany. PhD Dissertation, Lehrstuhl für Vegetationsokologie, Department für Ökologie, Technischen Universität MünchenGoogle Scholar
  13. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1:182–195CrossRefPubMedGoogle Scholar
  14. Heijmans MMPD, Arp WJ, Chapin FS III (2004) Carbon dioxide and water vapour exchange from understory species in boreal forest. Agricultural and Forest Meteorology 123:135–147CrossRefGoogle Scholar
  15. Heijmans MMPD, Mauquoy D, van Geel B, Berendse F (2008) Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. Journal of Vegetation Science 19:307–320CrossRefGoogle Scholar
  16. Heikkinen JEP, Elsakov V, Martikainen PJ (2002) Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochemical Cycles 16:1115. doi: 10.1029/2002GB001930 CrossRefGoogle Scholar
  17. Hirota M, Tang Y, Hu Q, Hirata S, Kato T, Mo W, Cao G, Mariko S (2006) Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan plateau. Ecosystems 9:673–688CrossRefGoogle Scholar
  18. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tingor M, Miller HL (eds) . Cambridge University Press, Cambridge 996 ppGoogle Scholar
  19. Juszczak R, Augustin J (2013) Exchange of the greenhouse gases methane and nitrous oxide at a temperate pristine fen mire in Central Europe. Wetlands 33(5):895–907CrossRefGoogle Scholar
  20. Juszczak R, Acosta M, Olejnik J (2012) Comparison of daytime and nighttime ecosystem respiration measured by the closed chamber technique on a temperate mire in Poland. Polish Journal of Environmental Studies 21(3):643–658Google Scholar
  21. Juszczak R, Humphreys E, Acosta M, Michalak-Galczewska M, Kayzer D, Olejnik J (2013) Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant and Soil 366:505–520. doi: 10.1007/s11104-012-1441-y CrossRefGoogle Scholar
  22. Kirschbaum MU (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27(6):753–760CrossRefGoogle Scholar
  23. Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2014) Plant functional types define magnitude of drought response in peatland CO2exchange. Ecology 95:123–131CrossRefPubMedGoogle Scholar
  24. Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629CrossRefGoogle Scholar
  25. Laine A, Byrne KA, Kiely G, Tuittila ES (2007) Patterns in vegetation and CO2 dynamics along a water level gradient in a lowland blank bog. Ecosystems 10:890–905CrossRefGoogle Scholar
  26. Lamentowicz M, Mueller M, Gałka M, Barabach J, Milecka K, Goslar T, Binkowski M (2015) Reconstructing human impact on peatland development during the past 200 years in CE Europe through biotic proxies and X-ray tomography. Quaternary International 357:282–294CrossRefGoogle Scholar
  27. Leppälä M, Laine AM, Seväkivi ML, Tuittila ES (2011) Differences in CO2 dynamic between succesional mire plant communities during wet and dry summers. Journal of Vegetation Science 22:357–366CrossRefGoogle Scholar
  28. Linder S, Troeng E (1981) The seasonal variation in stem and coarse root respiration of a 20-year-old scots pine (Pinus sylvestris L.). In: Tranquillini W, eds, Dickenwachstum der Bäume. Mitt Forstl Bundesversuchsanst Wien 142:125–140Google Scholar
  29. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Functional Ecology 8:15–323CrossRefGoogle Scholar
  30. Matuszkiewicz W (2007) Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Wydawnictwo Naukowe PWN, ISBN 978-83-01-14439-5. (in Polish)Google Scholar
  31. Mauquoy D, van Geel B, Blaauw M, Speranza A, van der Plicht J (2004) Changes in solar activity and Holocene climatic shifts derived from 14C wiggle-match dated peat deposits. The Holocene 14:45–52CrossRefGoogle Scholar
  32. Mikhailov OA, Zagirova SV, Miglovets MN, Wille C (2013) Carbon dioxide fluxes in the ecosystem of meso-oligotrophic peatland during the transition period from autumn to winter. Comtemporary Problems of Ecology 6:143–148CrossRefGoogle Scholar
  33. Mitsch WJ, Gosselink JG (eds) (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  34. Mitsch WJ, Zhang L, Anderson CJ, Altor AE, Hernandez ME (2005) Creating riverine wetlands:ecological succession, nutrient retention, and pulsing effects. Ecological Engineering 25:510–527CrossRefGoogle Scholar
  35. Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles 12:53–69CrossRefGoogle Scholar
  36. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99CrossRefGoogle Scholar
  37. Riutta T, Laine J, Aurela M, Rinne J, Vesala T, Laurila T, Haapanala S, Pihlatie M, Tuittila ES (2007) Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus 59B:838–852CrossRefGoogle Scholar
  38. Silvola J, Aaltonen H (1984) Water content and photosynthesis in the peat mosses Sphagnum fuscum and S. angustifolium. Annales Botanici Fennici 21:1–6Google Scholar
  39. Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ (1996) CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology 84:219–228CrossRefGoogle Scholar
  40. Smith KA, Robertson GP, Melillo JM (1994) Exchange of trace gases between the terrestrial biosphere and the atmosphere in the midlatitudes. In: Prinn RG (ed) Global atmospheric-Biospheric chemistry. Plenum Press, New York, pp 179–203CrossRefGoogle Scholar
  41. Stockfors J (2000) Temperature variation and distribution of living cells within tree stems: implications for stem respiration modelling and scale up. Tree Physiology 20:1057–1062CrossRefPubMedGoogle Scholar
  42. Thompson C, Beringer J, Chapin FS III, McGuire AD (2004) Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest. Journal of Vegetation Science 15:397–406CrossRefGoogle Scholar
  43. Tuittila ES, Komulainen VM, Vasander H, Laine J (1999) Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120:563–574CrossRefPubMedGoogle Scholar
  44. van Geel B, Buurman J, Waterbolk HT (1996) Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11:451–460CrossRefGoogle Scholar
  45. Waddington JM, Roulet NT (2000) Carbon balance of a boreal patterned peatland. Global Change Biology 6:87–97CrossRefGoogle Scholar
  46. Waddington JM, Rotenberg PA, Warren FJ (2001) Peat CO2 production in a natural and cutover peatland: implications for restoration. Biogeochemistry 54:115–130CrossRefGoogle Scholar
  47. Wallén B, Falkengren-Grerup UT, Malmer N (1988) Biomass, productivity and relative rate of photosynthesis of sphagnum at different water levels on a south Swedish peat bog. Ecography 11(1):70–76CrossRefGoogle Scholar
  48. Ward SE, Ostle NJ, McNamara NP, Bardgett RD (2010) Litter evenness influences short-term peatland decomposition processes. Oecologia 164:511–520CrossRefPubMedGoogle Scholar
  49. Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD (2013) Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters 16:1285–1293CrossRefPubMedGoogle Scholar
  50. Yu ZC, Beilman DW, Frolking S, MacDonald GM, Roulet RT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. Eos, American Geophysical Union Transactions 92:97–98CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2017

Authors and Affiliations

  • Manuel Acosta
    • 1
    Email author
  • Radek Juszczak
    • 2
  • Bogdan Chojnicki
    • 2
  • Marian Pavelka
    • 1
  • Kateřina Havránková
    • 1
  • Jacek Lesny
    • 2
  • Lenka Krupková
    • 1
  • Marek Urbaniak
    • 2
  • Kateřina Machačová
    • 3
  • Janusz Olejnik
    • 1
    • 2
  1. 1.Department of Matters and Energy FluxesGlobal Change Research Institute, CAS, v.v. i.BrnoCzech Republic
  2. 2.Department of MeteorologyPoznan University of Life SciencesPoznanPoland
  3. 3.Laboratory of Ecological Plant PhysiologyGlobal Change Research Institute, CAS, v.v.i.BrnoCzech Republic

Personalised recommendations