, Volume 36, Issue 5, pp 863–874 | Cite as

Relationships between Vegetation Succession, Pore Water Chemistry and CH4 and CO2 Production in a Transitional Mire of Western Siberia (Tyumen Oblast)

  • T.-M. WertebachEmail author
  • K.-H. Knorr
  • M. Lordieck
  • N. Tretiakov
  • C. Blodau
  • N. Hölzel
  • T. Kleinebecker
Original Research


We present data on a transitional mire in South-Western Siberia that evolved from early thermokarst lake succession. The vegetation of the mire shows a remarkable zonation from the edges to the center. Vegetation, peat characteristics, pH and electric conductivity were recorded at 10 sites along a transect of 1.5 km. At two of the transect points with contrasting vegetation and succession stage (floating mat vs. birch forest) pore water peepers were inserted once for 3 weeks and pore waters of the upper 60 cm were analyzed for major anions and cations, and dissolved CO2 and CH4 concentrations. Pore waters substantially differed between the floating mat and the birch forest regarding base cation chemistry and pH whilst nutrient availability was comparable. Compared to literature, depth integrated productions (DIPs) of CH4 and CO2 were high for both sites but three times higher for the floating mat (CH4 10.89 mmol m−2 d−1, CO2 34.19 mmol m−2 d−1). Along with other reasons, the higher DOC input at this location seems to be responsible for the higher DIP by fueling higher microbial activity. We discuss driving factors for biogeochemical differences between both sites and draw conclusions on CH4 production during mire evolution.


Mire evolution Western Siberia Methane production Biogeochemistry Base cations DOC 



This work was conducted as part of project SASCHA (‘Sustainable land management and adaption strategies to climate change for the Western Siberian grain belt’). We are grateful for funding by the German Government, Federal Ministry of Education and Research within their Sustainable Land Management funding framework (funding reference 01LL0906F). Thanks to Jörg Müller for determination of the non-Sphagnum bryophytes and to Immo Kämpf for help concerning the field determination of vascular plants. Sebastian Schmidt and Valentin Klaus are acknowledged for helpful discussions regarding our results. Sarah Weking is thanked for help and advice concerning some of the figures. A special thank goes to Andrei Tolstikov and Johannes Kamp as they spent much time on organization of our stays in Russia and established worthy partnerships to Russian colleagues. We thank two anonymous reviewers for helpful comments on an earlier version of the manuscript.

Supplementary material

13157_2016_798_MOESM1_ESM.pdf (15 kb)
ESM 1 (PDF 14 kb)


  1. Abnizova A, Siemens J, Langer M, Boike J (2012) Small ponds with major impact: the relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Global Biogeochemical Cycles 26Google Scholar
  2. Andrus RE (1986) Some aspects of Sphagnum ecology. Canadian Journal of Botany-Revue Canadienne De Botanique 64:416–426Google Scholar
  3. Anon (2005) Bodenkundliche Kartieranleitung, 5th. edn. Schweizerbart’sche Verlagsbuchhandlung, HannoverGoogle Scholar
  4. Avagyan A, Runkle BRK, Hartmann J, Kutzbach L (2014) Spatial variations in pore-water biogeochemistry greatly exceed temporal changes during baseflow conditions in a Boreal River valley mire complex, Northwest Russia. Wetlands 34:1171–1182CrossRefGoogle Scholar
  5. Basiliko N, Moore TR, Lafleur PM, Roulet NT (2005) Seasonal and inter-annual decomposition, microbial biomass, and nitrogen dynamics in a Canadian bog. Soil Science 170:902–912CrossRefGoogle Scholar
  6. Basiliko N, Blodau C, Roehm C, Bengtson P, Moore TR (2007) Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems 10:1148–1165CrossRefGoogle Scholar
  7. Beer J, Blodau C (2007) Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochimica et Cosmochimica Acta 71:2989–3002CrossRefGoogle Scholar
  8. Bellisario LM, Bubier JL, Moore TR, Chanton JP (1999) Controls on CH4 emissions from a northern peatland. Global Biogeochemical Cycles 13:81–91CrossRefGoogle Scholar
  9. Bendell-Young L (2003) Peatland interstitialwater chemistry in relation to that of surface pools along a peatland mineral gradient. Water, Air, and Soil Pollution 143:363–375CrossRefGoogle Scholar
  10. Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography 43:1500–1510CrossRefGoogle Scholar
  11. Bleuten W, Naumov AV, Huttunen J, Repo M, Kosykh NP, Mironicheva-Tokareva NP, Borren W, Lapshina ED (2008) Carbon sequestration by subarctic peatlands of Western Siberian peatland ecosystems and responses to climate warming. Geophysical Research Abstracts 10Google Scholar
  12. Blodau C (2002) Carbon cycling in peatlands: A review of processes and controls. Environmental Reviews 10:111–134CrossRefGoogle Scholar
  13. Blodau, C. (2011) Thermodynamic control on terminal electron transfer and methanogenesis. In P. G. Tratnyek, T. J. Grundl and S. B. Haderlein (eds.) Aquatic Redox Chemistry. American Chemical Society, Washington DC, p 65–83Google Scholar
  14. Blodau C, Roulet NT, Heitmann T, Stewart H, Beer J, Lafleur P, Moore TR (2007) Belowground carbon turnover in a temperate ombrotrophic bog. Global Biogeochemical Cycles 21:12CrossRefGoogle Scholar
  15. Blodau C, Rees R, Flessa H, Rodionov A, Guggenberger G, Knorr KH, Shibistova O, Zrazhevskaya G, Mikheeva N, Kasansky OA (2008) A snapshot of CO2 and CH4 evolution in a thermokarst pond near Igarka, northern Siberia. Journal of Geophysical Research – Biogeosciences 113:8CrossRefGoogle Scholar
  16. Brehm K (1971) Ein Sphagnum-Bult als Beispiel einer natürlichen Ionenaustauschersäule. Beiträge zur Biologie der Pflanzen 47:287–312Google Scholar
  17. Broder T, Blodau C, Biester H, Knorr KH (2015) Sea spray, trace elements, and decomposition patterns as possible constraints on the evolution of CH4 and CO2 concentrations and isotopic signatures in oceanic ombrotrophic bogs. Biogeochemistry 122:327–342CrossRefGoogle Scholar
  18. Bubier JL (1995) The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. Journal of Ecology 83:403–420CrossRefGoogle Scholar
  19. Bubier JL, Moore TR, Bellisario L, Comer NT, Crill PM (1995) Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochemical Cycles 9:455–470CrossRefGoogle Scholar
  20. Clymo RS (1963) Ion exchange in Sphagnum and its relation to Bog Ecology. Annals of Botany 27:309–324Google Scholar
  21. Clymo RS (1984) Sphagnum-dominated Peat Bog - a naturally acid ecosystem. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 305:487–499CrossRefGoogle Scholar
  22. Corbett JE, Burdige DJ, Tfaily MM, Dial AR, Cooper WT, Glaser PH, Chanton JP (2013) Surface production fuels deep heterotrophic respiration in northern peatlands. Global Biogeochemical Cycles 27:1163–1174CrossRefGoogle Scholar
  23. Damman AWH (1978) Distribution and movement of elements in ombrotrophic Peat Bogs. Oikos 30:480–495CrossRefGoogle Scholar
  24. Daulat WE, Clymo RS (1998) Effects of temperature and water table on the efflux of methane from peatland surface cores. Atmospheric Environment 32:3207–3218CrossRefGoogle Scholar
  25. Degefie DT, Fleischer E, Klemm O, Soromotin AV, Soromotina OV, Tolstikov AV, Abramov NV (2014) Climate extremes in South Western Siberia: past and future. Stochastic Environmental Research and Risk Assessment 28:2161–2173CrossRefGoogle Scholar
  26. Didukh YA (2011) The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, KievGoogle Scholar
  27. Estop-Aragones C, Knorr KH, Blodau C (2013) Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding. Biogeosciences 10:421–436CrossRefGoogle Scholar
  28. Fenchel, T., G. M. King and T. H. Blackburn (2012) Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 3rd Edition. Elsevier Academic Press Inc, 525 B Street, Suite 1900, San Diego, Ca 92101–4495 USAGoogle Scholar
  29. Fetzer S, Bak F, Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiology Ecology 12:107–115CrossRefGoogle Scholar
  30. Flessa H, Rodionov A, Guggenberger G, Fuchs H, Magdon P, Shibistova O, Zrazhevskaya G, Mikheyeva N, Kasansky OA, Blodau C (2008) Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Global Change Biology 14:2040–2056CrossRefGoogle Scholar
  31. Frahm JP, Frey W (1992) Moosflora. Ulmer, StuttgartGoogle Scholar
  32. Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: The role of CH4 production and oxidation. Biogeochemistry 51:91–112CrossRefGoogle Scholar
  33. Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophysical Research Letters 32:4Google Scholar
  34. Glagolev M, Kleptsova I, Filippov I, Maksyutov S, Machida T (2011) Regional methane emission from West Siberia mire landscapes. Environmental Research Letters 6Google Scholar
  35. Gorham E (1991) Northern Peatlands - role in the carbon-cycle and probable responses to climatic warming. Ecological Applications 1:182–195CrossRefGoogle Scholar
  36. Hesslein RH (1976) Insitu sampler for close interval pore water studies. Limnology and Oceanography 21:912–914CrossRefGoogle Scholar
  37. Howie SA, Tromp-van Meerveld I (2011) The essential role of the Lagg in Raised Bog function and restoration: a review. Wetlands 31:613–622CrossRefGoogle Scholar
  38. Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology 7:919–932CrossRefGoogle Scholar
  39. Keddy PA, Fraser LH, Solomeshch AI, Junk WJ, Campbell DR, Arroyo MTK, Alho CJR (2009) Wet and wonderful: the world’s largest wetlands are conservation priorities. Bioscience 59:39–51CrossRefGoogle Scholar
  40. Kirpotin SN, Berezin A, Bazanov V, Polishchuk Y, Vorobiov S, Mironycheva-Tokoreva N, Kosykh N, Volkova I, Dupre B, Pokrovsky O, Kouraev A, Zakharova E, Shirokova L, Mognard N, Biancamaria S, Viers J, Kolmakova M (2009) Western Siberia wetlands as indicator and regulator of climate change on the global scale. International Journal of Environmental Studies 66:409–421CrossRefGoogle Scholar
  41. Knorr KH, Horn MA, Borken W (2015) Significant non-symbiotic nitrogen fixation in Patagonian ombrotrophic bogs. Global Change Biology 21:2357–2365CrossRefPubMedGoogle Scholar
  42. Kovalev RV (1969) Genesis of the soils of Western Siberia. Academy of science of the USSR. Siberian Branch, JerusalemGoogle Scholar
  43. Kremenetski KV, Velichko AA, Borisova OK, MacDonald GM, Smith LC, Frey KE, Orlova LA (2003) Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and late quaternary history. Quaternary Science Reviews 22:703–723CrossRefGoogle Scholar
  44. Laine J, Harju P, Timonen T, Laine A, Tuittila E-S, Minkkinen K, Vasander H (2009) The intricate beauty of Sphagnum mosses : a Finnish guide for identification. University of Helsinki Department of Forest Ecology, HelsinkiGoogle Scholar
  45. Lapshina ED (2006) The vegetation of Ob valley mires in the southern forest zone of Western Siberia. Phytocoenologia 36:421–463CrossRefGoogle Scholar
  46. Lerman A (1979) Geochemical processes: water and sediment environments. John Wiley, HobokenGoogle Scholar
  47. Loisel J, Yu ZC, Beilman DW, Camill P, Alm J, Amesbury MJ, Anderson D, Andersson S, Bochicchio C, Barber K, Belyea LR, Bunbury J, Chambers FM, Charman DJ, De Vleeschouwer F, Fialkiewicz-Koziel B, Finkelstein SA, Galka M, Garneau M, Hammarlund D, Hinchcliffe W, Holmquist J, Hughes P, Jones MC, Klein ES, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Makila M, Mallon G, Mathijssen P, Mauquoy D, McCarroll J, Moore TR, Nichols J, O’Reilly B, Oksanen P, Packalen M, Peteet D, Richard PJH, Robinson S, Ronkainen T, Rundgren M, Sannel ABK, Tarnocai C, Thom T, Tuittila ES, Turetsky M, Valiranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou WJ (2014) A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 24:1028–1042CrossRefGoogle Scholar
  48. Lukenbach MC, Hokanson KJ, Moore PA, Devito KJ, Kettridge N, Thompson DK, Wotton BM, Petrone RM, Waddington JM (2015) Hydrological controls on deep burning in a northern forested peatland. Hydrological Processes 29:4114–4124CrossRefGoogle Scholar
  49. Manasypov RM, Pokrovsky OS, Kirpotin SN, Shirokova LS (2014) Thermokarst lake waters across the permafrost zones of western Siberia. The Cryosphere 8:1177–1193CrossRefGoogle Scholar
  50. McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data. MjM Software, Gleneden BeachGoogle Scholar
  51. Motorin AS (2012) Izmenenie vodno-fizicheskih svojstv torfjayh pochv severnogo zaural’ja pri sel’skohozjajstvennom ispol’zovanii [Changes of hydrological and physical peat properties after agricultural use in northern Zauralye]. Communications of the Tyumen State Agricultural University, 631 [in Russian]Google Scholar
  52. Peregon A, Uchida M, Shibata Y (2007) Sphagnum peatland development at their southern climatic range in West Siberia: trends and peat accumulation patterns. Environmental Research Letters 2Google Scholar
  53. Peregon A, Uchida M, Yamagata Y (2009) Lateral extension in Sphagnum mires along the southern margin of the boreal region, Western Siberia. Environmental Research Letters 4Google Scholar
  54. Reeve AS, Siegel DI, Glaser PH (1996) Geochemical controls on peatland pore water from the Hudson Bay Lowland: a multivariate statistical approach. Journal of Hydrology 181:285–304CrossRefGoogle Scholar
  55. Riis T, Hawes I (2003) Effect of wave exposure on vegetation abundance, richness and depth distribution of shallow water plants in a New Zealand lake. Freshwater Biology 48:75–87CrossRefGoogle Scholar
  56. Rothmaler W (2002) Exkursionsflora. Spektrum, BerlinGoogle Scholar
  57. Schipper AM, Zeefat R, Tanneberger F, van Zuidam JP, Hahne W, Schep SA, Loos S, Bleuten W, Joosten H, Lapshina ED, Wassen MJ (2007) Vegetation characteristics and eco-hydrological processes in a pristine mire in the Ob River valley (Western Siberia). Plant Ecology 193:131–145CrossRefGoogle Scholar
  58. Schmidt SR, Kleinebecker T, Vogel A, Hoelzel N (2010) Interspecific and geographical differences of plant tissue nutrient concentrations along an environmental gradient in Southern Patagonia, Chile. Aquatic Botany 92:149–156CrossRefGoogle Scholar
  59. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51CrossRefGoogle Scholar
  60. Sheng YW, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M, Beilman DW, Dubinin P (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Global Biogeochemical Cycles 18:14CrossRefGoogle Scholar
  61. Shotyk W, Steinmann P (1994) Pore-water indicators of rainwater-dominated versus groundwater-dominated Peat Bog profiles (Jura Mountains, Switzerland). Chemical Geology 116:137–146CrossRefGoogle Scholar
  62. Sjörs H, Gunnarsson U (2002) Calcium and pH in north and central Swedish mire waters. Journal of Ecology 90:650–657CrossRefGoogle Scholar
  63. Smith LC, MacDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenetski KV, Sheng Y (2004) Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 303:353–356CrossRefPubMedGoogle Scholar
  64. Steinmann P, Shotyk W (1996) Sampling anoxic pore waters in peatlands using “peepers” for in situ filtration. Fresenius Journal of Analytical Chemistry 354:709–713Google Scholar
  65. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, New JerseyGoogle Scholar
  66. Tahvanainen T (2004) Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of the north-eastern Fennoscandian Shield. Folia Geobotanica 39:353–369CrossRefGoogle Scholar
  67. Tchebakova NM, Parfenova E, Soja AJ (2009) The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environmental Research Letters 4Google Scholar
  68. Thompson Y, Sandefur BC, Karathanasis AD, D’Angelo E (2009) Redox potential and seasonal porewater biogeochemistry of Three Mountain Wetlands in Southeastern Kentucky, USA. Aquatic Geochemistry 15:349–370CrossRefGoogle Scholar
  69. Turunen J, Tahvanainen T, Tolonen K, Pitkanen A (2001) Carbon accumulation in West Siberian mires, Russia. Global Biogeochemical Cycles 15:285–296CrossRefGoogle Scholar
  70. Velichko AA, Catto N, Drenova AN, Klimanov VA, Kremenetski KV, Nechaev VP (2002) Climate changes in East Europe and Siberia at the late glacial-holocene transition. Quaternary International 91:75–99CrossRefGoogle Scholar
  71. von Post L (1922) Sveriges geologiska undersögnings torvinventering och några av dess hittills vunna resultat. Svenska Mosskulturföreningen Tidskrift 1:1–27Google Scholar
  72. Vorob’eva LA, Pankova EI (2008) Saline-alkali soils of Russia. Eurasian Soil Science 41:457–470CrossRefGoogle Scholar
  73. Walter H (1977) The oligotrophic peatlands of Western Siberia - The largest Peino-Helobiome in the world. Vegetatio 34:167–178CrossRefGoogle Scholar
  74. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75CrossRefPubMedGoogle Scholar
  75. Walter KM, Smith LC, Chapin FS III (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences 365:1657–1676CrossRefGoogle Scholar
  76. Weisner SEB (1987) The relation between wave exposure and distribution of emergent vegetation in an eutrophic lake. Freshwater Biology 18:537–544CrossRefGoogle Scholar
  77. Wertebach T-M, Hoelzel N, Kleinebecker T (2014) Birch encroachment affects the base cation chemistry in a restored bog. Ecohydrology 7:1163–1171Google Scholar

Copyright information

© Society of Wetland Scientists 2016

Authors and Affiliations

  • T.-M. Wertebach
    • 1
    Email author
  • K.-H. Knorr
    • 2
  • M. Lordieck
    • 1
  • N. Tretiakov
    • 3
  • C. Blodau
    • 2
  • N. Hölzel
    • 1
  • T. Kleinebecker
    • 1
  1. 1.Institute for Landscape Ecology, Working Group Biodiversity and Ecosystem ResearchUniversity of MünsterMünsterGermany
  2. 2.Institute for Landscape Ecology, Working Group Ecohydrology and BiogeochemistryUniversity of MünsterMünsterGermany
  3. 3.Institute for ChemistryTyumen State UniversityTyumenRussian Federation

Personalised recommendations