Advertisement

Wetlands

, Volume 36, Issue 2, pp 265–274 | Cite as

Abundance, Richness, Seasonal and Altitudinal Dynamics of Aquatic True Bugs (Heteroptera) in Mountain Wetlands of Argentina

  • E. E. ScheiblerEmail author
  • M. C. Melo
  • S. I. Montemayor
  • A. M. Scollo
Original Research

Abstract

Mountain wetlands provide unique information because their biota is highly specific and contributes significantly to regional diversity. The goals of this study were assessing altitudinal and temporal variation in the distribution of Heteropteran assemblages in mountain wetlands; and studying the phenology of the most abundant species. All stages of Heteroptera and data on environmental variables were collected monthly over one year from five mountain wetlands. A simple community structure, and also a low richness of aquatic true bugs, composed of four Heteropteran families (Corixidae, Belostomatidae, Notonectidae and Gelastocoridae), characterized our ponds. Richness and abundance varied temporally and spatially (p < 0.0001); and increased at higher elevations. Additionally, the highest abundance of cold stenothermal species occurred at the highest altitudes where harsh conditions are prevalent. Ectemnostega (E.) quadrata and S. (T.) jensenhaarupi, both endemic to the Andes region, were the most abundant species. Both these species showed univoltine cycles and overwintered as adults. Biodiversity of the Heteroptera reached maximum values in summer when water temperature increased. Temporal and spatial monitoring studies provide key information on the distribution, diversity, and habitat requirements of Heteropteran species as well as on conservation and management of these vulnerable habitats and species which are faced with climate warming.

Keywords

Aquatic heteropteran communities Phenology High-mountain ponds Arid environment 

Notes

Acknowledgments

We especially want to thank our colleagues from the Entomology Lab (IADIZA- CCT Mendoza CONICET) for their support during the fieldwork. We are especially grateful to Nélida B. Horak for assistance in the English language and to the Direction of Renewable Natural Resources (Mendoza Government, Ministry of the Environment) for granting the permits for us to conduct the samplings (Resolutions: 552 and 1353). This study was funded by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and the following grants: FONCYT (Fondo para la investigación científica y tecnológica) PICT 2013-1539 and PICT 2014-0488.

References

  1. Bachmann AO (1981) Insecta Hemiptera Corixidae. Fauna de Agua Dulce de la República Argentina 35: 1–270.Google Scholar
  2. Biggs J, Williams P, Whitfield P, Nicolet P, Weatherby A (2005) 15 years of pond assessment in Britain: results and lessons learned from the work of pond conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15:693–714CrossRefGoogle Scholar
  3. Bloechl A, Koenemann S, Philippi B, Melber A (2010) Abundance, diversity and succession of aquatic coleoptera and heteroptera in a cluster of artificial ponds in the north German lowlands. Limnologica 40:215–225CrossRefGoogle Scholar
  4. Crawley MJ (1993) ‘GLIM for ecologist‘. Blackwell Scientific Publishing, OxfordGoogle Scholar
  5. Cummins KW, Merritt RW, Berg MB (2008) Ecology and distribution of aquatic insects. In: Cummins KW, Merritt RW, Berg MB (eds) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Co., Dubuque, pp. 105–122Google Scholar
  6. De Meester L, Declerck S, Stoks R, Louette G, Van de Meutter F, De Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15:715–725CrossRefGoogle Scholar
  7. Departamento General de Irrigación (2006) Estudios de caracterización del Sistema hídrico superficial de la provincia de Mendoza. Programa de riego y drenaje de la provincia de Mendoza PROSAPDGI-OEI, Gobierno de Mendoza, Departamento General de Irrigación, Argentina, p. 176.Google Scholar
  8. Fontanarrosa MS, Collantes MB, Bachmann AO (2013) Aquatic insect assemblages of man-made permanent ponds, Buenos Aires city, Argentina. Neotropical Entomology 42:22–31CrossRefPubMedGoogle Scholar
  9. Hinden H, Oertli B, Menetrey N, Sager L, Lachavanne JB (2005) Alpine pond biodiversity: what are the related environmental variables? Aquatic Conservation: Marine and Freshwater Ecosystems 15:613–624CrossRefGoogle Scholar
  10. Hungerford HB (1948) The corixidae of the western hemisphere (hemiptera). The University of Kansas Science Bulletin 32:1–827Google Scholar
  11. Ilg C, Oertli B (2014) How can we conserve cold sthenotherm communities in warming alpine ponds? Hydrobiologia 723:53–62CrossRefGoogle Scholar
  12. Karaouzas I, Dimitriou E, Lampou A, Colombari E (2015) Seasonal and spatial patterns of macroinvertebrate assemblages and environmental conditions in Mediterranean temporary ponds in Greece. Limnology 16:41–53CrossRefGoogle Scholar
  13. Macán TT (1954) A contribution to the study of the ecology of corixidae (hemiptera). The Journal of Animal Ecology 23:115–141CrossRefGoogle Scholar
  14. McConway KJ, Jones MC, Taylor PC (1999) Statistical modelling using GENSTAT. Arnold Publisher, LondonGoogle Scholar
  15. Melo MC, Scheibler EE (2011) Description of the immature stages of Sigara (Tropocorixa) jensenhaarupi Jaczewski 1927 (Heteroptera: Corixidae), with ecological notes on the species. Revista Mexicana de Biodiversidad 82:931–944Google Scholar
  16. Mereta ST, Boets P, Bayih AA, Malu A, Ephrem Z, Sisay A, Endale H, Yitbarek M, Jemal A, De Meester L, Goethals PLM (2012) Analysis of environmental factors determining the abundance and diversity of macroinvertebrate taxa in natural wetlands of southwest Ethiopia. Ecological Informatics 7:52–61CrossRefGoogle Scholar
  17. Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology 51:467–494Google Scholar
  18. Oertli B, Auderset Joye D, Castella E, Juge R, Lachavanne JB (2000) Diversite´ biologique et typologie e’cologique des e’tangs et petits lacs de Suisse. Swiss agency for the environment. Laboratory of Aquatic Ecology and Biology (LEBA), University of Geneva, Forests and LandscapeGoogle Scholar
  19. Oertli B, Indermuehle N, Angélibert S, Hinden H, Stoll A (2008) Macroinvertebrate assemblages in 25 high alpine ponds of the Swiss national park (cirque of macun) and relation to environmental variables. Hydrobiologia 597:29–41CrossRefGoogle Scholar
  20. Polhemus JT (2008) Aquatic and semiaquatic hemiptera. In: Merrit RW, Cummins KW, Berg MB (eds) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Co., Dubuque, pp. 385–423Google Scholar
  21. Popham EJ (1943) Ecological studies of the commoner species of British corixidae. The Journal of Animal Ecology 12:124–136CrossRefGoogle Scholar
  22. Ruml M, Vulić T (2005) Importance of phenological observations and predictions in agriculture. The Journal of Agricultural Science 50(2):217–225Google Scholar
  23. Savage AA (1990) The distribution of corixidae in lakes and the ecological status of the North West midlands meres. Field Studies 7:516–530Google Scholar
  24. Scheibler EE, Ciocco NF (2011) Distribution of macroinvertebrate assemblages along a saline wetland in harsh environmental conditions from central-west Argentina. Limnologica 41:37–47CrossRefGoogle Scholar
  25. Scheibler EE, Ciocco NF (2013) Diversity of aquatic insects and other associated macroinvertebrates in an arid wetland (Mendoza province, Argentina). Revista de la Sociedad Entomológica Argentina 72:41–53Google Scholar
  26. Scheibler EE, Melo MC (2010) Description of immature stages of Ectemnostega (ectemnostega) quadrata (signoret 1885) (Heteroptera: Corixidae), with notes on ecological requirements of the species. Aquatic Insects 32:99–111CrossRefGoogle Scholar
  27. Schnack JA (1976) Estimación de parámetros en una población de corixidae (Hemiptera) en base a un modelo estocástico de captura- recaptura. Limnobios 1:1–7Google Scholar
  28. Sommaruga R (2001) The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B: Biology 62:35–42CrossRefGoogle Scholar
  29. Tully O, McCarthy TK, O’Donnell D (1991) The ecology of the corixidae (Hemiptera: Heteroptera) in the Corrib catchment, Ireland. Hydrobiologia 210:161–169CrossRefGoogle Scholar
  30. Van Vliet AJH, Schwartz MD (2002) Phenology and climate: the timing of life cycle events as indicators of climatic variability and change. International Journal of Climatology 22:1713–1714CrossRefGoogle Scholar
  31. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in southern England. Biological Conservation 115:329–341CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2016

Authors and Affiliations

  • E. E. Scheibler
    • 1
    • 3
    Email author
  • M. C. Melo
    • 2
    • 3
  • S. I. Montemayor
    • 2
    • 3
  • A. M. Scollo
    • 1
    • 3
  1. 1.Laboratorio de EntomologíaIADIZA, CCT CONICET MendozaMendozaArgentina
  2. 2.División Entomología, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations