, Volume 35, Issue 4, pp 709–721 | Cite as

Wetland Conservation in the Gulf of Mexico: The Example of the Salt Marsh Morning Glory, Ipomoea sagittata

  • Guillermo Huerta-Ramos
  • Patricia Moreno-Casasola
  • Victoria SosaEmail author
Original Research


Global climate change will have major effects on wetlands, ecosystems with elevated biodiversity and of enormous economic importance. Using ecological niche modeling and genetic data from three plastid DNA markers sequenced from 96 plants, we studied the salt marsh morning glory, Ipomoea sagittata, to understand the impact that future global warming and increasing sea level may have on aquatic plant conservation, distribution and genetic connectivity on the Gulf of Mexico. Data suggest that genetic variation is low and lacks structure; probable causes include high gene flow, clonal reproduction or use of ineffective molecular markers. Global warming models for its potential distribution in the year 2080 predict a loss of suitable habitat in its northern inland distribution (Cuatro Ciénegas Basin), while its coastal and southern habitats increase. Genetic connectivity decreases along the coast owing to a rise in sea level (Yucatán, Laguna Madre Basin, Usumacinta Basin). Three zones are identified, each requiring a different conservation strategy: 1) A saltwater intrusion zone where most protected areas are; 2) A stability zone which may offer optimal conditions for the creation of protected areas; 3) A zone of range expansion that may cause ecological instability, reducing species richness and promoting colonization by opportunistic species.


Climate change Cuatro Ciénegas Basin Ecological connectivity Ecological niche modeling I. carnea subsp. fistulosa Sea level rise Yucatan coast 



We thank Andrew P. Vovides, Antonio Hernández, Carla Gutiérrez and Dulce Infante whose reviews significantly improved this manuscript. We are grateful to Diego Angulo, Ruth Delgado-Dávila, Eduardo Ruíz-Sánchez, Andrés Ortíz-Rodríguez and Ismael Valdivieso for assistance in the field. We also thank Arith Pérez and Cristina Bárcenas for their help in the laboratory and Anna Armitage for providing samples. Laboratory and fieldwork were supported by a grant from CONACyT (106451) to P.M.C. and G.H.R. gratefully acknowledges a graduate studies scholarship from CONACyT (322444). With this study G.H.R. has fulfilled his Master of Science degree requirements at the Instituto de Ecología, A. C.


  1. Alagador D, Cerdeira JO, Araújo MB (2014) Shifting protected areas: scheduling spatial priorities under climate change. Journal of Applied Ecology 51:703–713. doi: 10.1111/1365-2664.12230 CrossRefGoogle Scholar
  2. Anderegg WRL, Prall JW, Harold J, Schneider SH (2010) Expert credibility in climate change. Proceedings of the National Academy of Sciences of the United States of America 107:12107–12109. doi: 10.1073/pnas.1003187107 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arafeh R, Kadereit JW (2006) Long-distance seed dispersal, clone longevity and lack of phylogeographical structure in the European distributional range of the coastal Calystegia soldanella (L.) R. Br. (Convolvulaceae). Journal of Biogeography 33:1461–1469. doi: 10.1111/j.1365-2699.2006.01512.x CrossRefGoogle Scholar
  4. Araújo M (2009) Climate change and spatial conservation planning. Spatial Conservation Prioritization: quantitative methods and computational tools. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 172–184Google Scholar
  5. Araújo MB, Cabeza M, Thuiller W et al (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10:1618–1626. doi: 10.1111/j.1365-2486.2004.00828.x CrossRefGoogle Scholar
  6. Arrigo N, Buerki S, Sarr A et al (2011) Phylogenetics and phylogeography of the monocot genus Baldellia (Alismataceae): Mediterranean refugia, suture zones and implications for conservation. Molecular Phylogenetics and Evolution 58:33–42. doi: 10.1016/j.ympev.2010.11.009 PubMedCrossRefGoogle Scholar
  7. Austin DF (2014) Salt marsh morning-glory (Ipomoea sagittata, Convolvulaceae) — An amphi-Atlantic species. Economic Botany 68:203–219CrossRefGoogle Scholar
  8. Austin DF, Huáman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45:3–38CrossRefGoogle Scholar
  9. Austin DF, Kitajima K, Yoneda Y, Qian L (2001) A putative tropical American plant, Ipomoea nil (Convolvulaceae), in pre-Columbian Japanese art. Economic Botany 55:515–527. doi: 10.1007/BF02871714 CrossRefGoogle Scholar
  10. Avise J (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  11. Baldwin AH, Mendelssohn IA (1998) Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia 116:543–555CrossRefGoogle Scholar
  12. Bálint M, Málnás K, Nowak C et al (2012) Species history masks the effects of human-induced range loss–unexpected genetic diversity in the endangered giant mayfly Palingenia longicauda. PLoS One 7, e31872. doi: 10.1371/journal.pone.0031872 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x PubMedCentralPubMedCrossRefGoogle Scholar
  14. Bezaury-Creel JE (2005) Protected areas and coastal and ocean management in Mexico. Ocean and Coastal Management 48:1016–1046. doi: 10.1016/j.ocecoaman.2005.03.004 CrossRefGoogle Scholar
  15. Bezaury-Creel J, Gutiérrez-Carbonell D (2009) Areas naturales protegidas y desarrollo social en México. Capital natural de México 2:385–431Google Scholar
  16. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5:694–700. doi: 10.1111/2041-210X.12200 CrossRefGoogle Scholar
  17. Campitelli BE, Stinchcombe JR (2014) Population dynamics and evolutionary history of the weedy vine Ipomoea hederacea in North America. G3: Genes, Genomes, Genetics 8:1407–1416CrossRefGoogle Scholar
  18. Cennamo P, Del Guacchio E, Paino L (2013) Genetic structure of Ipomoea imperati (Convolvulaceae) in the Mediterranean region and implications for its conservation. Phytotaxa 87:69–74. doi: 10.1016/j.aquabot.2007.03.006 Google Scholar
  19. Contreras-Balderas S (1984) Environmental impacts in Cuatro Cienegas, Coahuila, Mexico: a commentary. Journal of the Arizona-Nevada Academy of Science 19:85–88Google Scholar
  20. Cota-Sánchez JH, Remarchuk K, Ubayasena K (2006) Ready-to-use DNa extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reporter 24:161–167CrossRefGoogle Scholar
  21. Craft C, Clough J, Ehman J et al (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7:73–78. doi: 10.1890/070219 CrossRefGoogle Scholar
  22. De Meester L, Gómez A, Okamura B, Schwenk K (2002) The Monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23:121–135. doi: 10.1016/S1146-609X(02)01145-1 CrossRefGoogle Scholar
  23. Dorken ME, Barrett SCH (2004) Chloroplast haplotype variation among monoecious and dioecious populations of Sagittaria latifolia (Alismataceae) in eastern North America. Molecular Ecology 13:2699–2707. doi: 10.1111/j.1365-294X.2004.02246.x PubMedCrossRefGoogle Scholar
  24. Edwards JL (2000) Interoperability of biodiversity databases: biodiversity information on every desktop. Science 289(80):2312–2314. doi: 10.1126/science.289.5488.2312 PubMedCrossRefGoogle Scholar
  25. Eken G, Bennun L, Brooks TM et al (2004) Key biodiversity areas as site conservation targets. Bioscience 54:1110. doi: 10.1641/0006-3568(2004)054[1110:KBAASC]2.0.CO;2 CrossRefGoogle Scholar
  26. Elorza MS, Vesperinas ES, Sánchez ED (2004) Atlas de las plantas alóctonas invasoras en España. 193Google Scholar
  27. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564–567PubMedCrossRefGoogle Scholar
  28. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedCentralPubMedGoogle Scholar
  29. Feagin RA, Martinez ML, Mendoza-González G, Costanza R (2010) Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecology and Society 15: [online] URL:
  30. Fitzpatrick MC, Gove AD, Sanders NJ, Dunn RR (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology 14:1337–1352. doi: 10.1111/j.1365-2486.2008.01559.x CrossRefGoogle Scholar
  31. Flynn K, McKee K, Mendelssohn I (1995) Recovery of freshwater marsh vegetation after a saltwater intrusion event. Oecologia 103:63–72CrossRefGoogle Scholar
  32. Gaffin, SR, Rosenzweig, C, Xiang X, G Yetman (2001) Downscaling and geo-spatial fridding of socioeconomic projections from the IPCC special report on emissions scenarios 8SRES). Glo Environ Chang 14:105–123Google Scholar
  33. Gallien L, Münkemüller T, Albert CH et al (2010) Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions 16:331–342. doi: 10.1111/j.1472-4642.2010.00652.x CrossRefGoogle Scholar
  34. Gene Codes (2000) Sequencher: Version 4.1. 2. Gene Codes Corporation. Ann ArborGoogle Scholar
  35. Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany 89:237–250. doi: 10.1016/j.aquabot.2007.12.009 CrossRefGoogle Scholar
  36. Glick P, Clough J, Polaczyk A (2013) Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana. Journal of Coastal Research 211–233. doi:  10.2112/SI63-0017.1
  37. Gomes LF, Chandler JM, Vaughan CE, et al. (2012) Aspects of germination, emergence, and seed production of three Ipomoea Taxa. 26:245–248.Google Scholar
  38. Greaver TL, Sternberg LSL (2010) Decreased precipitation exacerbates the effects of sea level on coastal dune ecosystems in open ocean islands. Global Change Biology 16:1860–1869CrossRefGoogle Scholar
  39. Guntenspergen AGR, Cahoon DR, Grace J, et al. (1995) Disturbance and recovery of the Louisiana coastal marsh landscape from the impacts of hurricane. Andrew Source: Journal of Coastal Research, Special Issue 21 . Impacts of Hurricane Andrew on the Coastal Zones of Florida and Louisiana: 22–26Google Scholar
  40. Haase R (1999) Seasonal growth of “algodão-bravo” (Ipomoea carnea spp. fistulosa). Pesquisa Agropecuaria Brasileira 34(2):159–163CrossRefGoogle Scholar
  41. Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Global Change Biology 17:194–205. doi: 10.1111/j.1365-2486.2010.02233.x CrossRefGoogle Scholar
  42. Hannah L, Midgley GF, Lovejoy T et al (2002) Conservation of biodiversity in a changing climate. Conservation Biology 16:264–268. doi: 10.1046/j.1523-1739.2002.00465.x CrossRefGoogle Scholar
  43. Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Frontiers in Ecology and the Environment 5:131–138. doi: 10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2 CrossRefGoogle Scholar
  44. Harrison S, Hastings A (1996) Genetic and evolutionary consequences of metapopulation structure. Trends Ecol Evol II:2–5.Google Scholar
  45. Hijmans RJ, Cameron S, Parra J, et al. (2008) WorldClim. Univ. California, BerkeleyGoogle Scholar
  46. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. doi: 10.1126/science.1189930 PubMedCrossRefGoogle Scholar
  47. Houlahan JE, Findlay CS (2004) Effect of invasive plant species on temperate wetland plant diversity. Conservation Biology 18:1132–1138. doi: 10.1111/j.1523-1739.2004.00391.x CrossRefGoogle Scholar
  48. INEGI (2005) Humedales potenciales. Escala 1:250000. Accessed 2 Feb 2013
  49. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, In: S. Solomon et al. (Eds.), New York: Cambridge University PressGoogle Scholar
  50. Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054. doi: 10.1890/04-1563 CrossRefGoogle Scholar
  51. Koga K, Kadono Y, Setoguchi H (2008) Phylogeography of Japanese water crowfoot based on chloroplast DNA haplotypes. Aquatic Botany 89:1–8. doi: 10.1016/j.aquabot.2007.12.012 CrossRefGoogle Scholar
  52. Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 136:89–136. doi:  10.1139/A06-001
  53. Landgrave R, Moreno-Casasola P (2012) Evaluación cuantitativa de la pérdida de humedales en México. Investigación Ambiental 4:19–35Google Scholar
  54. Li X, Rowley RJ, Kostelnick JC et al (2009) GIS analysis of global impacts from sea level rise. Photogrammetric Engineering and Remote Sensing 75:807–818. doi: 10.14358/PERS.75.7.807 CrossRefGoogle Scholar
  55. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  56. López-Rosas H, Moreno-Casasola P, Mendelssohn IA (2006) Effects of experimental disturbances on a tropical freshwater marsh invaded by the African grass Echinochloa pyramidalis. Wetlands 26:593–604. doi: 10.1672/0277-5212(2006)26[593:EOEDOA]2.0.CO;2 CrossRefGoogle Scholar
  57. Lot A, Novelo A, Olvera M, Ramírez-García P (1999) Catálogo de angiospermas acuáticas de México. Hidrófitas estrictas emergentes, sumergidas y Flot Cuad 33:89–91Google Scholar
  58. Martínez-Meyer E (2005) Climate change and biodiversity: some considerations in forecasting shifts in species’ potential distributions. Biodiversity Informatics 2:42–55CrossRefGoogle Scholar
  59. Mcdonald A (1991) Origin and diversity of Mexican Convolvulaceae. Anales del Instituto de Biología 62:65–82Google Scholar
  60. McDonald A (1993) Flora de Veracruz no. 73: Convolvulaceae I.Google Scholar
  61. Medagli P, Bianco P, D’emerico P, et al. (1992) New reports and distribution in Italy of Ipomoea sagittata Poiret (Fam. Convolvulaceae). 17–19.Google Scholar
  62. Mendoza-González G, Martínez ML, Rojas-Soto OR, et al. (2013) Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise. Global Change Biology 1–12. doi:  10.1111/gcb.12236
  63. Miller RRE, Rausher MMD, Manos PPS (1999) Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Systematic Botany 24:209–227CrossRefGoogle Scholar
  64. Minteer B, Collins J (2010) Move it or lose it? The ecological ethics of relocating species under climate change. Ecological Applications 20:1801–1804PubMedCrossRefGoogle Scholar
  65. Miryeganeh M, Takayama K, Tateishi Y, Kajita T (2014) Long-distance dispersal by sea-drifted seeds has maintained the global distribution of Ipomoea pes-caprae subsp. brasiliensis (Convolvulaceae). PLoS One 9, e91836. doi: 10.1371/journal.pone.0091836 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Moreno-Casasola P (2008) Los humedales en México: tendencias y oportunidades. Cuadernos de biodiversidad 10–18Google Scholar
  67. Mulholland PJ, Best GR, Coutant CC, Hornberger GM, Meyer JL, Robinson PJ, Stenberg JR, Turner RE, VeraHerrera F, Wetzel RG (1997) Effects of climate change on freshwater ecosystems of the south-eastern United States and the Gulf coast of Mexico. Hydrological Processes 11:949–970CrossRefGoogle Scholar
  68. Neel M (2008) Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus albens (Fabaceae). Biological Conservation 141:938–955. doi: 10.1016/j.biocon.2007.12.031 CrossRefGoogle Scholar
  69. Nicholls RJ, Tol RSJ (2006) Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences 364:1073–1095. doi: 10.1098/rsta.2006.1754 PubMedCrossRefGoogle Scholar
  70. Nicholls R, Hoozemans F, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environmental Change 9:S69–S87CrossRefGoogle Scholar
  71. Nicholls RJ, Marinova N, Lowe JA et al (2011) Sea-level rise and its possible impacts given a “beyond 4 °C world” in the twenty-first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences 369:161–181. doi: 10.1098/rsta.2010.0291 PubMedCrossRefGoogle Scholar
  72. Novelo-Retana A (2006) Plantas acuáticas de la Reserva de Biosfera Pantanos de Centla. Espac. Nat. y Desarro. Sustentable AC México DF, MéxicoGoogle Scholar
  73. Oreskes N (2004) The scientific consensus on climate change. Science 306:1686. doi: 10.1126/science.1103618 PubMedCrossRefGoogle Scholar
  74. Ortega.Ramirez JR, Valiente-Banuet A, Urrutia-Fucugauchi J et al (1998) Paleoclimatic changes durign the Late Pleistocene-Holocene in Laguna Babicora, near the Chihuahuan Desert, Mexico. Canadian Journal of Earth Sciences 35:1168–1179CrossRefGoogle Scholar
  75. Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Molecular Ecology 22:925–946. doi: 10.1111/mec.12152 PubMedCrossRefGoogle Scholar
  76. Petitpierre B, Kueffer C, Broennimann O et al (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348. doi: 10.1126/science.1215933 PubMedCrossRefGoogle Scholar
  77. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop) 31:161–175CrossRefGoogle Scholar
  78. Pinkava DJ (1984) Vegetation and Flora of the Bolson of Cuatro Cienegas Region, Coahuila, Mexico: IV. Summary, Endemism and Corrected Catalogue. Journal of the Arizona-Nevada Academy of Science 19Google Scholar
  79. Quantum GIS Development Team (2012) Quantum GIS Geographic Information System.
  80. Rabalais N (2002) Nitrogen in aquatic ecosystems. AMBIO A Journal of Human Environment 31:102–112CrossRefGoogle Scholar
  81. Rahel FJ, Bierwagen B, Taniguchi Y (2008) Managing aquatic species of conservation concern in the face of climate change and invasive species. Conservation Biology 22:551–561. doi: 10.1111/j.1523-1739.2008.00953.x PubMedCrossRefGoogle Scholar
  82. Rambaut A (2002) SE-AL v. 2.0a11: sequence alignment program.Google Scholar
  83. Rhazi L, Grillas P (2010) Status and distribution of aquatic plants. In: García N, Cuttelod A, Abdul Malak D (eds) Status Distrib. Freshw. Biodivers. North. Africa. IUCN, Gland, Switzerland, Cambridge, UK, and Malaga, Spain, p 141Google Scholar
  84. Ridley HN (1930) The dispersal of plants throughout the world. Kent, L. Reeve & Company, LimitedGoogle Scholar
  85. Rodrigues ASL, Akçakaya HR, Andelman SJ et al (2004) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54:1092. doi: 10.1641/0006-3568(2004)054[1092:GGAPRF]2.0.CO;2 CrossRefGoogle Scholar
  86. Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23:137–154. doi: 10.1016/S1146-609X(02)01146-3 CrossRefGoogle Scholar
  87. Sax DF, Early R, Bellemare J (2013) Niche syndromes, species extinction risks, and management under climate change. Trends in Ecology & Evolution 28:517–523. doi: 10.1016/j.tree.2013.05.010 CrossRefGoogle Scholar
  88. Schaal BA, Hayworth DA, Olsen KM et al (1998) Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7:465–474. doi: 10.1046/j.1365-294x.1998.00318.x CrossRefGoogle Scholar
  89. Schrag AM, Bunn AG, Graumlich LJ (2008) Influence of bioclimatic variables on tree-line conifer distribution in the greater Yellowstone ecosystem: implications for species of conservation concern. Journal of Biogeography 35:698–710. doi: 10.1111/j.1365-2699.2007.01815.x CrossRefGoogle Scholar
  90. Sgrò CM, Lowe AJ, Hoffmann A (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4:326–337. doi: 10.1111/j.1752-4571.2010.00157.x PubMedCentralPubMedCrossRefGoogle Scholar
  91. Shaw J, Lickey EB, Beck JT et al (2005) The tortoise and the hare II: relative utility of 21 noncodig chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92:142–168PubMedCrossRefGoogle Scholar
  92. Shaw J, Lickey EB, Schilling EE et al (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94:275–288PubMedCrossRefGoogle Scholar
  93. Shaw J, Shafer HL, Leonard OR et al (2014) Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV. American Journal of Botany 101:1987–2004. doi: 10.3732/ajb.1400398 PubMedCrossRefGoogle Scholar
  94. Shoo LP, Hoffmann AA, Garnett S et al (2013) Making decisions to conserve species under climate change. Climatic Change 119:239–246. doi: 10.1007/s10584-013-0699-2 CrossRefGoogle Scholar
  95. Siemens AH, Moreno-Casasola P, Sarabia Bueno C (2006) The metabolization of dunes and wetlands by the city of Veracruz, Mexico. Journal of Latin American Geography 5:7–29. doi: 10.1353/lag.2006.0010 CrossRefGoogle Scholar
  96. Slocum MG, Mendelssohn IA (2008) Effects of three stressors on vegetation in an oligohaline marsh. Freshwater Biology 53:1783–1796. doi: 10.1111/j.1365-2427.2008.02002.x CrossRefGoogle Scholar
  97. Sork VL, Davis FW, Westfall R et al (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Molecular Ecology 19:3806–3823. doi: 10.1111/j.1365-294X.2010.04726.x PubMedCrossRefGoogle Scholar
  98. Souza V, Espinosa-Asuar L, Escalante AE et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proceedings of the National Academy of Sciences of the United States of America 103:6565–6570. doi: 10.1073/pnas.0601434103 PubMedCentralPubMedCrossRefGoogle Scholar
  99. Temunović M, Frascaria-Lacoste N, Franjić J et al (2013) Identifying refugia from climate change using coupled ecological and genetic data in a transitional Mediterranean-temperate tree species. Molecular Ecology 22:2128–2142. doi: 10.1111/mec.12252 PubMedCrossRefGoogle Scholar
  100. Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9:137–152. doi: 10.1016/j.ppees.2007.09.004 CrossRefGoogle Scholar
  101. Valle M, Chust G, del Campo A et al (2014) Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biological Conservation 170:74–85. doi: 10.1016/j.biocon.2013.12.017 CrossRefGoogle Scholar
  102. Vander Zanden MJ, Olden JD (2008) A management framework for preventing the secondary spread of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences 65:1512–1522. doi: 10.1139/F08-099 CrossRefGoogle Scholar
  103. Vázquez-González C, Fermán-Almada JL, Moreno-Casasola P, Espejel I (2014) Ocean and coastal management scenarios of vulnerability in coastal municipalities of tropical Mexico: an analysis of wetland land use. Ocean and Coastal Management 89:11–19. doi: 10.1016/j.ocecoaman.2013.12.004 CrossRefGoogle Scholar
  104. Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Molecular Ecology 22:3261–3278. doi: 10.1111/mec.12310 PubMedCrossRefGoogle Scholar
  105. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proceedings of the National Academy of Sciences of the United States of America 106:21527–21532. doi: 10.1073/pnas.0907765106 PubMedCentralPubMedCrossRefGoogle Scholar
  106. Volkova PA, Trávníček P, Brochmann C (2010) Evolutionary dynamics across discontinuous freshwater systems: rapid expansions and repeated allopolyploid origins in the Palearctic white water-lilies (Nymphaea). Taxon 59:483–494Google Scholar

Copyright information

© Society of Wetland Scientists 2015

Authors and Affiliations

  • Guillermo Huerta-Ramos
    • 1
  • Patricia Moreno-Casasola
    • 2
  • Victoria Sosa
    • 1
    Email author
  1. 1.Biología EvolutivaInstituto de Ecología A.C.XalapaMexico
  2. 2.Ecología FuncionalInstituto de Ecología A.C.XalapaMexico

Personalised recommendations