Wetlands

, Volume 34, Issue 5, pp 955–968 | Cite as

Assessing Mangrove Above-Ground Biomass and Structure using Terrestrial Laser Scanning: A Case Study in the Everglades National Park

  • Emanuelle A. Feliciano
  • Shimon Wdowinski
  • Matthew D. Potts
Original Research

Abstract

Mangroves are among the ecosystems with the highest potential for carbon sequestration and storage. In these ecosystems and others above-ground biomass (AGB) is often used to estimate above-ground carbon content. We used a Leica-ScanStation-C10 Terrestrial Laser Scanner (TLS) to estimate the volume and AGB of 40 mangrove trees distributed in three different mangrove sites located along Shark River Slough (SRS), in the western Everglades National Park. To estimate the volumetric shape of mangroves, we modeled stems as tapered geometrical surfaces called frustums of paraboloids and prop roots (Rhizophora mangle) as toroids and cylinders. AGB was estimated by multiplying the TLS-derived volume by wood specific density. Our TLS method for the SRS sites resulted in AGB estimates in the range of: 3.9 ± 0.4 to 31.3 ± 3.4 kg per tree in the short mangrove (<5 m) site, 27.4 ± 3.0 to 119.1 ± 12.9 kg per tree in the intermediate (<13 m) site and 52.1 ± 6.7 to 1756.5 ± 189.7 kg per tree in the tall (13–23 m) mangrove site. Our quantitative results: (1) enabled us to develop site-specific allometric relationships for tree diameter and AGB and (2) suggested that TLS is a promising alternative to destructive sampling.

Keywords

Mangrove vegetation LIDAR Terrestrial laser scanning (TLS) Stem volume Above-ground biomass, Forest structure, Allometry 

Supplementary material

13157_2014_558_MOESM1_ESM.doc (135 kb)
ESM1(DOC 135 kb).

References

  1. Alongi DM (2002) Present state and future of the world’s mangrove forests. Environmental Conservation 29(03):331–349CrossRefGoogle Scholar
  2. Alongi DM (2012) Carbon sequestration in mangrove forests. Carbon Management 3(3):313–322CrossRefGoogle Scholar
  3. Barr JG, Fuentes JD, Engel V, Zieman JC (2009) Physiological responses of red mangroves to the climate in the Florida Everglades. Journal of Geophysical Research – Biogeosciences 114Google Scholar
  4. Castaneda-Moya E, Twilley RR, Rivera-Monroy VH, Marx BD, Coronado-Molina C, Ewe SML (2011) Patterns of root dynamics in mangrove forests along environmental gradients in the Florida coastal Everglades, USA. Ecosystems 14(7):1178–1195CrossRefGoogle Scholar
  5. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):87–99PubMedCrossRefGoogle Scholar
  6. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters 12(4):351–366PubMedCrossRefGoogle Scholar
  7. Clawges R, Vierling L, Calhoon M, Toomey M (2007) Use of a ground-based scanning lidar for estimation of biophysical properties of western larch (Larix occidentalis). International Journal of Remote Sensing 28(19):4331–4344CrossRefGoogle Scholar
  8. Clough BF (1992) Primary productivity and growth of mangrove forests, Tropical mangrove ecosystems. Coastal and Estuarine Studies. AGU Washington, DC, pp 225–249.Google Scholar
  9. Clough BF, Dixon P, Dalhaus O (1997) Allometric relationships for estimating biomass in multi-stemmed mangrove trees. Australian Journal of Botany 45(6):1023–1031CrossRefGoogle Scholar
  10. Coronado-Molina C, Day JW, Reyes E, Perez BC (2004) Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida. Wetlands Ecology and Management 12(3):157–164CrossRefGoogle Scholar
  11. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5):293–297CrossRefGoogle Scholar
  12. Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L (1998) Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115(1-2):39–53CrossRefGoogle Scholar
  13. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20(1):154–159CrossRefGoogle Scholar
  14. Gong WK, Ong JE (1990) Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuarine, Coastal and Shelf Science 31(5):519–530CrossRefGoogle Scholar
  15. Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest metrics with a ground-based scanning lidar. Canadian Journal of Forest Research 34(3):573–583CrossRefGoogle Scholar
  16. Husch B, Beers TW, Kershaw Jr JA (2002) Forest mensuration. Wiley.Google Scholar
  17. Imbert D, Rollet B (1989) Phytmassaerienne et production primaire dans la mangrove du Grand Cul-de-sac Marine (Guadeloupe, Antilles francaises). Bulletin D Ecologie 20:27–39Google Scholar
  18. Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89(1):23–30PubMedCrossRefGoogle Scholar
  19. Kauffman JB, Heider C, Cole TG, Dwire KA, Donato DC (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31(2):343–352CrossRefGoogle Scholar
  20. Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology 21:471–477CrossRefGoogle Scholar
  21. Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany 89(2):128–137CrossRefGoogle Scholar
  22. Leica (2013) Cyclone 3D Point Cloud Processing Software. Last accessed: July 2013. From: http://hds.leica-geosystems.com/en/Leica-Cyclone_6515.htm
  23. Liang XL, Litkey P, Hyyppa J, Kaartinen H, Vastaranta M, Holopainen M (2012) Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Transactions on Geoscience and Remote Sensing 50(2):661–670CrossRefGoogle Scholar
  24. Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annual Review of Ecology and Systematics 5(1):39–64CrossRefGoogle Scholar
  25. Maas H-G, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing 29(5):1579–1593CrossRefGoogle Scholar
  26. Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10):552–560CrossRefGoogle Scholar
  27. Rivera-Monroy VH, de Mutsert K, Twilley RR, Castaneda-Moya E, Romigh MM, Davis SE (2007) Patterns of nutrient exchange in a riverine mangrove forest in the Shark River Estuary, Florida, USA. Hidrobiologica 17(2):169–178Google Scholar
  28. Rivera-Monroy VH, Castañeda-Moya E, Barr JG, Engel V, Fuentes JD, Troxler TG, Twilley RR, Bouillon S, Smith TJ, O’Halloran TL (2013) Current methods to evaluate net primary production and carbon budgets in mangrove forests. Methods in Biogeochemistry of Wetlands (methodsinbiogeo):243–288.Google Scholar
  29. Ross M, Ruiz P, Telesnicki G, Meeder J (2001) Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (U.S.A.). Wetlands Ecology and Management 9(1):27–37CrossRefGoogle Scholar
  30. Saenger P (1982) Morphological, anatomical and reproductive adaptations of Australian mangroves. In: B.F. Clough, mangroves ecosystems in Australia. Australia National University Press, Canberra, pp 153–191Google Scholar
  31. Saenger P (2003) Mangrove ecology, silviculture and conservation. Springer SBM.Google Scholar
  32. Sánchez BG (2005) Belowground productivity of mangrove forests in southwest Florida, Faculty of Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Oceanography and Coastal Sciences by Beatriz Giraldo Sánchez BS, Universidad Del Valle.Google Scholar
  33. Schlesinger WH, Bernhardt ES (2013) Biogeochemistry: An analysis of global change 3th Edition. Access Online via Elsevier, 2013.Google Scholar
  34. Seidel D, Beyer F, Hertel D, Fleck S, Leuschner C (2011) 3D-laser scanning: A non-destructive method for studying above- ground biomass and growth of juvenile trees. Agricultural and Forest Meteorology 151(10):1305–1311CrossRefGoogle Scholar
  35. Simard M, Zhang K, Rivera-Monroy VH, Ross MS, Ruiz PL, Castañeda-Moya E, Twilley RR, Rodriguez E (2006) Mapping height and biomass of mangrove forests in everglades national park with SRTM elevation data. Photogrammetric Engineering and Remote Sensing 72(3):299–311CrossRefGoogle Scholar
  36. Smith TJ III, Whelan KRT (2006) Development of allometric relations for three mangrove species in south Florida for use in the greater everglades ecosystem restoration. Wetlands Ecology and Management 14(5):409–419CrossRefGoogle Scholar
  37. Tansey K, Selmes N, Anstee A, Tate NJ, Denniss A (2009) Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. International Journal of Remote Sensing 30(19):5195–5209CrossRefGoogle Scholar
  38. Taylor JR (1997) An introduction to error analysis: The study of uncertainties in physical measurements. University Science Books.Google Scholar
  39. Twilley R, Chen R, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution 64(1-2):265–288CrossRefGoogle Scholar
  40. WAC (2013) World of Agroforestry Centre - Wood Density Database. Last accessed: July 2013. From: http://worldagroforestry.org/sea/products/afdbases/wd
  41. Watt PJ, Donoghue DNM (2005) Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing 26(7):1437–1446CrossRefGoogle Scholar
  42. White JF, Gould SJ (1965) Interpretation of the coefficient in the allometric equation. American Naturalist 99(904):5–18CrossRefGoogle Scholar
  43. Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: Towards a worldwide wood economics spectrum. Dryad data repositoryGoogle Scholar

Copyright information

© Society of Wetland Scientists 2014

Authors and Affiliations

  • Emanuelle A. Feliciano
    • 1
  • Shimon Wdowinski
    • 1
  • Matthew D. Potts
    • 2
  1. 1.Division of Marine Geology and GeophysicsUniversity of Miami - Rosenstiel School of Marine and Atmospheric ScienceMiamiUSA
  2. 2.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations