, Volume 34, Issue 5, pp 905–915

The Geochemistry of Amazonian Peats

  • Ian T. Lawson
  • Timothy D. Jones
  • Thomas J. Kelly
  • Euridice N. Honorio Coronado
  • Katherine H. Roucoux
Original Research


The chemical, physical and palaeobotanical composition of peat can be used to infer the history of a peatland and the processes presently operating within it. Here we present new data on the geochemistry of a peat sequence from a lowland palm swamp, Quistococha, in Peruvian Amazonia. We show, through comparison with subfossil pollen data from the same sequence, that changes in the depositional environment cause changes in peat properties including lignin content, C/N ratios, and the abundance of several metal cations, but that these properties are altered by post-depositional processes to a large extent. An upward trend in the top 1.5 m of the sequence in the concentrations of N, K, Ca, Mg and Na probably reflects nutrient uptake and cycling by the standing biomass. Upward trends in Mn and Fe concentrations suggest that limited oxygenation of the peat may occur to a similar depth. Comparison with other published records suggests that such deep biological alteration may be characteristic of tropical forested peats.


Inorganic geochemistry Lignin Cations Nutrient cycling Water table Pollen 

Supplementary material

13157_2014_552_MOESM1_ESM.xlsx (22 kb)
ESM 1(XLSX 22 kb)


  1. Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J, Rafiastanto A (2010) Drainage and land use impacts on changes in selected peat properties and peat degradation in west Kalimantan province, Indonesia. Biogeosciences 7:3403–3419CrossRefGoogle Scholar
  2. Armstrong W (1964) Oxygen diffusion from the roots of some British bog plants. Nature 204:801–802CrossRefGoogle Scholar
  3. Aucour A-M, Bonnefille R, Hillaire-Marcel C (1999) Sources and accumulation rates of organic carbon in an equatorial peat bog (Burundi, east africa) during the holocene: carbon isotope constraints. Palaeogeogr Palaeoclimatol Palaeoecol 150:179–189CrossRefGoogle Scholar
  4. Bauer IE (2004) Modelling effects of litter quality and environment on peat accumulation over different time‐scales. J Ecol 92:661–674CrossRefGoogle Scholar
  5. Benjamin MM, Honeyman BD (2000) Trace metals. In: Jacobson MC, Charlson RJ, Rodhe H, Orians GH (eds) Earth System Science: From Biogeochemical Cycles to Global Change. Elsevier, Amsterdam, pp 377–418Google Scholar
  6. Biester H, Hermanns Y-M, Martinez Cortizas A (2012) The influence of organic matter decay on the distribution of major and trace elements in ombrotrophic mires – a case study from the Harz mountains. Geochim Cosmochim Acta 84:126–136CrossRefGoogle Scholar
  7. Boggie R (1977) Water-table depth and oxygen content of deep peat in relation to root growth of Pinus contorta. Plant Soil 48:447–454CrossRefGoogle Scholar
  8. Bourdon S, Laggoun-Défarge F, Disnar JR, Maman O, Guillet B, Derenne S, Largeau C (2000) Organic matter sources and early diagenetic degradation in a tropical peaty marsh (Tritrivakely, Madagascar). implications for environmental reconstruction during the Sub-Atlantic. Org Geochem 31:421–438CrossRefGoogle Scholar
  9. Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia. PhD thesis, University of British ColumbiaGoogle Scholar
  10. Bragazza L, Gerdol R, Rydin H (2003) Effects of mineral and nutrient input on mire bio-geochemistry in two geographical regions. J Ecol 91:417–426CrossRefGoogle Scholar
  11. British Standard BS 7755 (1995). British standard BS 7755, section 3.9: 1995, ISO 11466. soil quality Part 3. Chemical methods section 3.9 extraction of trace elements soluble in aqua regia.Google Scholar
  12. Brncic TM, Willis KJ, Harris DJ, Telfer MW, Bailey RM (2009) Fire and climate change impacts on lowland forest composition in northern Congo during the last 2850 years from palaeoecological analyses of a seasonally flooded swamp. The Holocene 19:79–89CrossRefGoogle Scholar
  13. Cameron CC, Esterle JS, Palmer CA (1989) The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitutes. Int J Coal Geol 12:105–156CrossRefGoogle Scholar
  14. Chagué-Goff C, Fyfe WS (1996) Geochemical and petrographical characteristics of a domed bog, nova Scotia: a modern analogue for temperate coal deposits. Org Geochem 24:141–158CrossRefGoogle Scholar
  15. Damman AWH (1978) Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30:480–495CrossRefGoogle Scholar
  16. Disnar JR, Stefanova M, Bourdon S, Laggoun-Défarge F (2005) Sequential fatty acid analysis of a peat core covering the last two millennia (Tritrivakely lake, Madagascar): diagenesis appraisal and consequences for palaeoenvironmental reconstruction. Org Geochem 36:1391–1404CrossRefGoogle Scholar
  17. Dudley R, Kaspari M, Yanoviak SP (2012) Lust for salt in the western Amazon. Biotropica 44:6–9CrossRefGoogle Scholar
  18. Dungait JA, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796CrossRefGoogle Scholar
  19. Fortescue JAC (1992) Landscape geochemistry: retrospect and prospect–1990. Appl Geochem 7:1–53CrossRefGoogle Scholar
  20. Fritz C, Pancotto VA, Elzenga JTM, Visser EJW, Grootjans AP, Pol A, Iturraspe R, Roelofs JGM, Smolders AJP (2011) Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in patagonia. New Phytol 190:398–408PubMedCrossRefGoogle Scholar
  21. Gorham E, Janssens JA (1992) The paleorecord of geochemistry and hydrology in northern peatlands and its relation to global change. Suo 43:1127–1126Google Scholar
  22. Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use in southeast Asian tropical peatlands: a review. Glob Biogeochem Cycles 25:GB2001Google Scholar
  23. Higgins MA, Ruokolainen K, Tuomisto H, Llerena N, Cardenas G, Phillips OL, Vásquez R, Räsänen M (2011) Geological control of floristic composition in Amazonian forests. J Biogeogr 38:2136–2149PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in southeast Asia. Biogeosciences 7:1505–1514CrossRefGoogle Scholar
  25. Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071CrossRefGoogle Scholar
  26. Jauhiainen J, Limin S, Silvennoinen H, Vasander H (2008) Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89:3503–3514PubMedCrossRefGoogle Scholar
  27. Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77CrossRefGoogle Scholar
  28. Jones J, Hao J (1993) Ombrotrophic peat as a medium for historical monitoring of heavy metal pollution. Environ Geochem Health 15:67–74PubMedCrossRefGoogle Scholar
  29. Jowsey PC (1966) An improved peat sampler. New Phytol 65:245–248CrossRefGoogle Scholar
  30. Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proc Natl Acad Sci U S A 106:19405–19409PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Honorio Coronado EN, Ríos M, Lawson IT (2013) The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol Process. doi:10.1002/hyp.9884 Google Scholar
  32. King JA, Smith KA, Pyatt DG (1986) Water and oxygen regimes under conifer plantations and native vegetation on upland peaty gley soil and deep peat soils. J Soil Sci 37:485–497CrossRefGoogle Scholar
  33. Kuhry P, Vitt DH (1997) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275CrossRefGoogle Scholar
  34. Lähteenoja O, Page SE (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañon basin, Peruvian Amazonia. J Geophys Res 116:G02025Google Scholar
  35. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009a) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145CrossRefGoogle Scholar
  36. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009b) Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol 25:2311–2320CrossRefGoogle Scholar
  37. Lähteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in central Amazonia. Wetlands. doi:10.1007/s13157–013–0406–0 Google Scholar
  38. Malmer N, Holm E (1984) Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with 210Pb. Oikos 43:171–182CrossRefGoogle Scholar
  39. Malmer N, Wallén B (1999) The dynamics of peat accumulation on bogs: mass balance of hummocks and hollows and its variation throughout a millennium. Ecography 22:736–750CrossRefGoogle Scholar
  40. Malmer N, Wallén B (2004) Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. The Holocene 14:111–117CrossRefGoogle Scholar
  41. Maloney BK, McCormac FG (1995) A 30,000-year pollen and radiocarbon record from highland Sumatra as evidence for climatic change. Radiocarbon 37:181–190Google Scholar
  42. Marengo JA (1998) Climatologia de la zona de Iquitos, Peru. In: Kalliola R, Flores Paitan S (eds) Geoecologia y desarrollo amazonico: studio intergrado en la zona de Iquitos, Peru. Annales Universitatis Turkuensis Ser A 114, University of Turku, Finland, pp 35–57Google Scholar
  43. Mertes LAK (1997) Documentation and significance of the perirheic zone on inundated floodplains. Water Resour Res 33:1749–1762CrossRefGoogle Scholar
  44. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  45. Meyers PA, Lallier-Verges E (1999) Lacustrine sedimentary organic matter records of late quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  46. Muller J, Wüst RAJ, Weiss D, Hu Y (2006) Geochemical and stratigraphic evidence of environmental change at Lynch’s crater, Queensland, Australia. Glob Planet Chang 53:269–277CrossRefGoogle Scholar
  47. Neuzil SG (1997) Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits, Indonesia. In: Rieley JO, Page SE (eds) Biodiversity and Sustainability of Tropical Peatlands. Samara Publishing Limited, Cardigan, pp 55–72Google Scholar
  48. Neuzil SG, Cecil CB, Kane JS, Soedjono K (1993) Inorganic geochemistry of domed peat in Indonesia and its implication for the origin of mineral matter in coal. Geol Soc Am Spec Pap 286:23–44CrossRefGoogle Scholar
  49. Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65PubMedCrossRefGoogle Scholar
  50. Page SE, Wüst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19:625–635CrossRefGoogle Scholar
  51. Page SE, Rieley JO, Banks CJ (2011a) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818CrossRefGoogle Scholar
  52. Page SE, Morrison R, Malins C, Hooijer A, Rieley JO, Jauhiainen J (2011b) Review of peat surface greenhouse gas emissions from oil palm plantations in southeast Asia. The International Council on Clean Transportation, Washington, White Paper Number 15Google Scholar
  53. Pella E (1990) Elemental organic analysis. Part 2: state of the art. Am Lab 22:28–32Google Scholar
  54. Polak B (1975) Character and occurrence of peat deposits in the Malaysian tropics. In: Bartstra G-J, Casparie WA (eds) Modern Quaternary Research in Southeast Asia. AA Balkema, Rotterdam, pp 71–82Google Scholar
  55. Quesada CA, Lloyd J, Schwarz M (2009) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosciences Discussion 6:3993–4057CrossRefGoogle Scholar
  56. Quesada CA, Lloyd J, Schwarz M (2010) Variations in chemical and physical properties of amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541CrossRefGoogle Scholar
  57. Räsänen ME, Salo JS, Jungner H (1991) Holocene floodplain lake sediments in the amazon: 14C dating and palaeoecological use. Quat Sci Rev 10:363–372CrossRefGoogle Scholar
  58. Reimer PJ, Brown TA, Reimer RW (2004) Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304Google Scholar
  59. Reynolds V, Lloyd AW, Babweteera F, English CJ (2009) Decaying Raphia farinifera palm trees provide a source of sodium for wild chimpanzees in the Budongo forest, Uganda. PLoS One 4:e6194PubMedCrossRefPubMedCentralGoogle Scholar
  60. Rodriguez Pereira LA, Ribeiro Calbo ME, Juvenir Ferreira C (2000) Anatomy of pneumatophore of Mauritia vinifera mart. Braz Arch Biol Technol 43:327–333CrossRefGoogle Scholar
  61. Roucoux KH, Lawson IT, Jones TD, Baker TR, Coronado EN, Gosling WD, Lähteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoclimatol Palaeoecol 374:242–255CrossRefGoogle Scholar
  62. Rowland AP, Roberts JD (1994) Lignin and cellulose fractionation in decomposition studies using acid‐detergent fibre methods. Commun Soil Sci Plant Anal 25:269–277CrossRefGoogle Scholar
  63. Shepherd PA, Rieley JO, Page SE (1997) The relationship between forest vegetation and peat characteristics in the upper catchment of Sungai Sebangau, Central Kalimantan. In: Rieley JO, Page SE (eds) Biodiversity and Sustainability of Tropical Peatlands. Samara Publishing Limited, Cardigan, pp 191–210Google Scholar
  64. Shotyk W (1988) Review of the inorganic geochemistry of peats and peatland waters. Earth Sci Rev 25:95–176CrossRefGoogle Scholar
  65. Shotyk W, Nesbitt HW, Fyfe WS (1990) The behaviour of major and trace elements in complete vertical peat profiles from three sphagnum bogs. Int J Coal Geol 15:163–190CrossRefGoogle Scholar
  66. Troels-Smith J (1955) Karakterisering af Løse Jordater. Geological Society of Denmark/Rietzels Forlag, Copenhagen, p 73Google Scholar
  67. Vásquez-Ocmín PG, Sotero SVE, Del Castillo TD, Freitas AL, Maco LMM (2009) Diferenciación química de tres morfotipos de Mauritia flexuosa L.f. de la Amazonía Peruana. Revista de la Sociedad Química del Perú 75:320–328Google Scholar
  68. Viers J, Barroux G, Pinelli M, Seyler P, Oliva P, Dupré B, Resende Boaventura G (2005) The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the amazon river mainstem (Brazil). Sci Total Environ 339:219–232PubMedCrossRefGoogle Scholar
  69. Weiss D, Shotyk W, Rieley J, Page S, Gloor M, Reese S, Martinez-Cortizas A (2002) The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim Cosmochim Acta 66:2307–2323CrossRefGoogle Scholar
  70. Wüst RAJ (2001) Holocene evolution of the intermontane Tasek Bera peat deposit, Peninsular Malaysia: controls on composition and accumulation of a tropical freshwater peat deposit. PhD thesis, University of British Columbia.Google Scholar
  71. Wüst RAJ, Bustin RM (2001) Low-ash peat deposits from a dendritic, intermontane basin in the tropics: a new model for good quality coals. Int J Coal Geol 46:179–206CrossRefGoogle Scholar
  72. Wüst RAJ, Bustin RM (2003) Opaline and Al-Si phytoliths from a tropical mire system of west Malaysia: abundance, habit, elemental composition, preservation and significance. Chem Geol 200:267–292CrossRefGoogle Scholar
  73. Wüst RAJ, Ward CR, Bustin RM, Hawke MI (2002) Characterization and quantification of inorganic constituents of tropical peats and organic-rich deposits from Tasek Bera (Peninsular Malaysia): implications for coals. Int J Coal Geol 49:215–249Google Scholar

Copyright information

© Society of Wetland Scientists 2014

Authors and Affiliations

  • Ian T. Lawson
    • 1
  • Timothy D. Jones
    • 2
  • Thomas J. Kelly
    • 1
  • Euridice N. Honorio Coronado
    • 3
  • Katherine H. Roucoux
    • 1
  1. 1.School of GeographyUniversity of LeedsLeedsUK
  2. 2.Lancaster Environment Centre, LEC BuildingLancaster University, BailriggLancasterUK
  3. 3.Instituto de Investigaciones de la Amazonía PeruanaIquitosPeru

Personalised recommendations