Advertisement

Wetlands

, 31:907 | Cite as

Potential Impacts of Climate Change on Groundwater Supplies to the Doñana Wetland, Spain

  • Carolina Guardiola-AlbertEmail author
  • Christopher R. Jackson
Article

Abstract

Climate change impacts on natural recharge and groundwater-wetland dynamics were investigated for the Almonte-Marismas aquifer, Spain, which supports the internationally important Doñana wetland. Simulations were carried out using outputs from 13 global climate models to assess the impacts of climate change. Reductions in flow from the aquifer to streams and springs flooding the wetland, induced by changes in recharge according to different climate projections, were modelled. The results project that the change in climate by the 2080s, under a medium-high greenhouse gas emissions scenario, leads to a reduction in groundwater resources. The reduction in mean recharge ranges from 14%–57%. The simulations show that there is an impact on hydraulic head in terms of the overall water table configuration with decreases in groundwater level ranging from 0–17 m. Most simulations produce lower discharge rates from the aquifer to stream basins, with significant reductions in the larger La Rocina (between −55% and −25%) and Marismas (between −68% and −43%) catchments. Water flows from these two basins are critical to maintain aquatic life in the wetland and riparian ecosystems. Modelled climate-induced reductions in total groundwater discharge to the surface are generally larger than current groundwater abstraction rates. The results highlight that effective strategies for groundwater resources management in response to future climate change are imperative.

Keywords

Climate model ensemble Groundwater/Surface water interactions Modelling Recharge 

Notes

Acknowledgments

This study was undertaken as part of the “Improvement of the Almonte-Marismas mathematical model as a supporting tool for water resources management” project funded by the Spanish Geological Survey. Some additional funding was provided through the NERC-BGS core science budget. The authors would like to thank C Prudhomme at the Centre for Ecology and Hydrology, UK, for assistance in processing GCM output. C.R. Jackson publishes with the permission of the Executive Director of the British Geological Survey. Finally, we thank the Associate Editor and two anonymous reviewers for helpful comments and suggestions.

References

  1. Aguilera H, Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environmental Geology 57:963–974CrossRefGoogle Scholar
  2. Allen RA, Pruitt WO (1986) Rational use of the FAO Blaney-Criddle formula. Journal of Irrigation and Drainage Engineering, ASCE 112:139–155CrossRefGoogle Scholar
  3. Anderson MP, Woessner WW (1992) Applied groundwater modelling. Academic, San DiegoGoogle Scholar
  4. Bates B, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat. GenevaGoogle Scholar
  5. Candela L, von Igel W, Elorza FJ, Aronica G (2009) Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain). Journal of Hydrology 376:510–527CrossRefGoogle Scholar
  6. Custodio E, Iglesias M, Manzano M, Trick T (1994) Saltwater intrusion risk along the western Donana area cost (Southwestern Spain). 13th Salt Water Intrusion Meeting. Universita deli Studi di Cagliari, Italy, pp 286–303Google Scholar
  7. Custodio E, Manzano M, Escaler I (2007) Aquifer recharge and global change: application to Doñana. El cambio climático en Andalucía: evolución y consecuencias medioambientales. Junta de Andalucia Publication, pp 121–140Google Scholar
  8. Custodio E, Manzano M, Montes C (2009) Las aguas subterráneas en Doñana: aspectos ecológicos y sociales. Agencia Andaluza del Agua, SpainGoogle Scholar
  9. De Marsily G (1986) Quantitative hydrogeology. Academic, San DiegoGoogle Scholar
  10. Dragoni W, Sukhija BS (2008) Climate change and groundwater: a short review. Special Publication No. 288. The Geological Society, London, pp 1–12Google Scholar
  11. Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology 284:244–252CrossRefGoogle Scholar
  12. FAO (1975) Proyecto piloto de utilización de lagunas subterráneas para el desarrollo agrícola de la cuenca del Guadalquivir. Proyecto de transformación de la zona regable Almonte-Marismas. Technical Report. AGL:SF/SPA 16, RomeGoogle Scholar
  13. FAO (1998) Crop evapotranspiration; guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations Irrigation and Drainage Paper 56, RomeGoogle Scholar
  14. Goderniaux P, Brouyere S, Fowler HJ, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. Journal of Hydrology 373:122–138CrossRefGoogle Scholar
  15. Graham LP, Hagemann S, Jaun S, Beniston M (2007) On interpreting hydrological change from regional climate models. Climatic Change 81:97–122CrossRefGoogle Scholar
  16. Grindley J (1967) The estimation of soil moisture deficits. Meteorological Magazine 96:97–108Google Scholar
  17. Guardiola-Albert C, Murillo JM, Martín Machuca M, Mediavilla C, López Geta JA (2005) Modelo matemático revisado del acuífero Almonte-Marismas, aplicación a distintas hipótesis de gestión. Proceedings of the VI Symposium of Water in Andalusia II, pp 799–810Google Scholar
  18. Guardiola-Albert C, García-Bravo N, Mediavilla C, Martín Machuca M (2009) Gestión de los recursos hídricos subterráneos en el entorno de Doñana con el apoyo del modelo matemático del acuífero Almonte-Marismas. Boletín Geológico y Minero 120:361–376Google Scholar
  19. Hughes AG, Mansour MM, Robins NS (2008) Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal 16:845–854CrossRefGoogle Scholar
  20. IGME (1992) Hidrogeología del Parque Nacional de Doñana y su entorno. Colección informes de aguas subterráneas y geotecnia, Technical Report of Spanish Geological Survey, MadridGoogle Scholar
  21. IGME (2009) Mejora del modelo matemático del acuífero Almonte-Marismas como apoyo a la gestión de los recursos hídricos: estimación de la recarga, modelo estocástico y actualización. Technical Report of Spanish Geological Survey, MadridGoogle Scholar
  22. IPCC (2000) Special report on emissions scenarios. Summary for policymakers. Cambridge University Press, United KingdomGoogle Scholar
  23. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United KingdomGoogle Scholar
  24. Jackson CR, Meister R, Prudhomme C (2011) Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. Journal of Hydrology 399:12–28CrossRefGoogle Scholar
  25. Junta de Andalucía (2009) II Plan de Desarrollo Sostenible. Doñana. Memoria Informativa. Consejería de Medio Ambiente, p 87 http://www.pds.donana.es/documentos_publicos/1257323614359.pdf. Accessed 2 Sep 2010
  26. Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, James P, Smith A, Wilby RL (2007) A daily weather generator for use in climate change studies. Environmental Modelling and Software 22:1705–1719CrossRefGoogle Scholar
  27. Kuhn NJ, Baumhauer R, Schütt B (2011) Managing the impact of climate change on the hydrology of the Gallocante Basin, NE-Spain. Journal of Environmental Management 92:275–283PubMedCrossRefGoogle Scholar
  28. Lerner D, Issar SA, Simmers I (1990) Groundwater recharge. Verlag Heinz HeiseGoogle Scholar
  29. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A1Google Scholar
  30. Mansour MM, Hughes AG (2004) User’s manual for the distributed recharge model ZOODRM. British Geological Survey Internal Report IR/04/150Google Scholar
  31. Manzano M, Custodio E, Cardoso da Silva G, Lambán J (1998) Modelación del efecto del cambio climático sobre la recarga en dos acuíferos carbonatados del área mediterránea. 4º Congreso Latinoamericano de Hidrología Subterránea, Montevideo, Uruguay. ALHSUD 1:322–333Google Scholar
  32. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London, Series A 193:120–145CrossRefGoogle Scholar
  33. Primack AGB (2000) Simulation of climate-change effects on riparian vegetation in the Per Marquette River, Michiga. Wetlands 20:538–547CrossRefGoogle Scholar
  34. Prudic DE, Konikow LF, Banta ER (2004) A new stream-flow routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW-2000: U.S. Geological Survey Open-File Report 2004-1042Google Scholar
  35. Rodríguez-Rodríguez M, Benabente J, Cruz-San Julián JJ, Moral Martos F (2006) Estimation of ground-water exchange with semi-arid playa lakes (Antequera region, southern Spain). Journal of Arid Environments 66:272–289CrossRefGoogle Scholar
  36. Segui PQ, Ribes A, Martin E, Habets F, Boe J (2010) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. Journal of Hydrology 383:111–124CrossRefGoogle Scholar
  37. Serrano L, Reina M, Martín G, Reyes I, Arechederra A, León D, Toja J (2006) The aquatic systems of Doñana (SW Spain): watersheds and frontiers. Limnetica 25:11–32Google Scholar
  38. Sousa A, García Murillo P (1999) Historical evolution of the Abalario lagoon complexes (Doñana Natural Park, SW Spain). Limnetica 16:85–98Google Scholar
  39. Trick T, Custodio E (2004) Hydrodynamic characteristics of the western Doñana Region (area of El Abalario), Huelva, Spain. Hydrogeology Journal 12:321–335CrossRefGoogle Scholar
  40. UPC (1999) Modelo regional de flujo subterráneo del sistema acuífero Almonte-Marismas y su entorno. Technical Report of the Technical University of Catalonia, BarcelonaGoogle Scholar
  41. Wilby RL, Wigley TML, Conway D, Jones D, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resources Research 34:2995–3008CrossRefGoogle Scholar
  42. Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resources Research. doi: 10.1029/2005WR004065
  43. Younger PL, Teutsh G, Custodio E, Elliot T, Manzano M, Satuer M (2002) Assessments of the sensitivity to climate change of flow and natural water quality in four major carbonate aquifers of Europe. Sustainable groundwater development In: Hiscock KM, Rivett MO, Davison RM (eds) Geological Society Special Publication 193:303–323Google Scholar
  44. Woldeamlak ST, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeology Journal 15:891–901CrossRefGoogle Scholar
  45. WWF España (2006) Doñana y Cambio Climático. http://assets.wwfes.panda.org/downloads/informe_wwf_donana_cambio_climatico1_2006.pdf. Accessed 2 Sep 2010

Copyright information

© Society of Wetland Scientists 2011

Authors and Affiliations

  • Carolina Guardiola-Albert
    • 1
    Email author
  • Christopher R. Jackson
    • 2
  1. 1.Spanish Geological SurveyMadridEspaña
  2. 2.British Geological SurveyKingsley Dunham CentreKeyworthUK

Personalised recommendations