Wetlands

, Volume 30, Issue 1, pp 1–13 | Cite as

Hydrologic Dynamics of the Ground-Water-Dependent Sian Ka’an Wetlands, Mexico, Derived from InSAR and SAR Data

  • Bibi R. N. Gondwe
  • Sang-Hoon Hong
  • Shimon Wdowinski
  • Peter Bauer-Gottwein
Original Paper

Abstract

The 5,280 km2 Sian Ka’an Biosphere Reserve includes pristine wetlands fed by ground water from the karst aquifer of the Yucatan Peninsula, Mexico. The inflow through underground karst structures is hard to observe making it difficult to understand, quantify, and predict the wetland dynamics. Remotely sensed Synthetic Aperture Radar (SAR) amplitude and phase observations offer new opportunities to obtain information on hydrologic dynamics useful for wetland management. Backscatter amplitude of SAR data can be used to map flooding extent. Interferometric processing of the backscattered SAR phase data (InSAR) produces temporal phase-changes that can be related to relative water level changes in vegetated wetlands. We used 56 RADARSAT-1 SAR acquisitions to calculate 38 interferograms and 13 flooding maps with 24 day and 48 day time intervals covering July 2006 to March 2008. Flooding extent varied between 1,067 km2 and 2,588 km2 during the study period, and main water input was seen to take place in sloughs during October–December. We propose that main water input areas are associated with water-filled faults that transport ground water from the catchment to the wetlands. InSAR and Landsat data revealed local-scale water divides and surface water flow directions within the wetlands.

Keywords

Hydrology Remote sensing Surface water Synthetic aperture radar interferometry Yucatan Peninsula 

References

  1. Alsdorf DE, Melack JM, Dunne T, Mertes LAK, Hess LL, Smith LC (2000) Interferometric radar measurements of water level changes on the Amazon floodplain. Nature 404:174–177CrossRefPubMedGoogle Scholar
  2. Alsdorf DE, Smith LC, Melack JM (2001) Amazon floodplain water level changes measured with interferometric SIR-C radar. IEEE Transactions on Geoscience and Remote Sensing 39:423–431CrossRefGoogle Scholar
  3. Alsdorf D, Bates P, Melack J, Wilson M, Dunne T (2007) Spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters 34:L08402. doi:10.1029/2007GL029447 CrossRefGoogle Scholar
  4. Bazante J, Jacobi G, Solo-Gabriele T, Reed D, Mitchell-Bruker S, Childers DL, Leonard L, Ross M (2006) Hydrologic measurements and implications for tree island formation within Everglades National Park. Journal of Hydrology 329:606–619. doi:10.1016/j.jhydrol.2006.03.011 CrossRefGoogle Scholar
  5. Beddows PA (2004) Groundwater hydrology of a coastal conduit carbonate aquifer: Caribbean coast of the Yucatán Peninsula, México. Ph.D. Dissertation. University of Bristol, Bristol, UKGoogle Scholar
  6. Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophysical Research Letters 32:L16401. doi:10.1029/2005GL022814 CrossRefGoogle Scholar
  7. Bourgeau-Chavez LL, Smith KB, Brunzell SM, Kasischke ES, Romanowicz EA, Richardson CJ (2005) Remote monitoring of regional inundation patterns and hydroperiod in the Greater Everglades using synthetic aperture radar. Wetlands 25:176–191CrossRefGoogle Scholar
  8. Buckley S, Rosen P, Persaud P (2000) ROI_PAC Documentation—Repeat Orbit Interferometry Package. Version 1.1. http://www.earth.ox.ac.uk/∼timw/roi_pac/ROI_PAC_doc.pdf. Accessed 7 Mar 2008
  9. Comisión Nacional del Agua (2008) Climate data 1952–2007 for the Yucatan Peninsula obtained from the database of Comisión Nacional del Agua, Merida, MexicoGoogle Scholar
  10. Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry—two-dimensional phase unwrapping. Radio Science 23:713–720CrossRefGoogle Scholar
  11. Goldstein RM, Engelhardt H, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice-sheet motion—application to an Antarctic ice stream. Science 262:1525–1530CrossRefPubMedGoogle Scholar
  12. Gumbricht T, McCarthy TS, Bauer P (2005) The micro-topography of the wetlands of the Okavango Delta, Botswana. Earth Surface Processes and Landforms 30:27–39. doi:10.1002/esp.1124 CrossRefGoogle Scholar
  13. Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87:404–428. doi:10.1016/j.rse.2003.04.001 CrossRefGoogle Scholar
  14. Kim S-W, Wdowinski S, Amelung F, Dixon TH (2005) C-band interferometric SAR measurements of water level change in the wetlands: examples from Florida and Louisiana. Geoscience and Remote Sensing Symposium. IGARSS ’05. IEEE International 4:2708–2710Google Scholar
  15. Lang MW, Kasischke ES (2008) Using C-band synthetic aperture radar data to monitor forested wetland hydrology in Maryland’s coastal plain, USA. IEEE Transactions on Geoscience and Remote Sensing 46:535–546. doi:10.1109/TGRS.2007.909950 CrossRefGoogle Scholar
  16. Leonard L, Croft A, Childers D, Mitchell-Bruker S, Solo-Gabriele H, Ross M (2006) Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: implications for particulate transport. Hydrobiologia 569:5–22CrossRefGoogle Scholar
  17. Lerer S (2008) Estimation of actual evapotranspiration using remote sensing data for the Yucatan Peninsula, Mexico. M. Sc. Thesis. Technical University of Denmark, Kgs. Lyngby, DenmarkGoogle Scholar
  18. Lesser JM (1976) Estudio hidrogeologico e hidrogeoquimico de la Peninsula de Yucatan. Proyecto Conacyt-NSF 704, Secretaria de Recursos Hidraulicos, Direccion de Geohidrologia y Zonas Aridas, MexicoGoogle Scholar
  19. Lopez-Ornat A, Ramo C (1992) Colonial waterbird populations in the Sian Ka’an Biosphere Reserve (Quintana Roo, Mexico). Wilson Bulletin 104:501–515Google Scholar
  20. Lu Z, Kwoun O (2008) Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests. IEEE Transactions on Geoscience and Remote Sensing 46:2167–2184. doi:10.1109/TGRS.2008.917271 CrossRefGoogle Scholar
  21. Lu Z, Crane M, Kwoun O, Wells C, Swarzenski C, Rykhus R (2005) C-band radar observes water level change in swamp forests. EOS Transactions, AGU 86:141–144CrossRefGoogle Scholar
  22. Martinez J-M, Le Toan T (2007) Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of Environment 108:209–223CrossRefGoogle Scholar
  23. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics 36:441–500CrossRefGoogle Scholar
  24. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142CrossRefGoogle Scholar
  25. Mazzotti FJ, Fling HE, Merediz G, Lazcano M, Lasch C, Barnes T (2005) Conceptual ecological model of the Sian Ka’an Biosphere Reserve, Quintana Roo, Mexico. Wetlands 25:980–997CrossRefGoogle Scholar
  26. Morales Barbosa JJ (1992) Los humedales, un mundo olvidado. Series: Sian Ka’an, Introducción a los Ecosistemas de la Península de Yucatan. Amigos de Sian Ka’an A. C.. Impresos MARCA, Mérida, Yucatán, MexicoGoogle Scholar
  27. NASDA/NASA (2008) Tropical Rainfall Measuring Mission (TRMM), data product 3B43. TRMM algorithms were developed by the TRMM Science Team. TRMM data were processed by the TRMM Science Data and Information System (TSDIS) and the TRMM Office; archived and distributed by the Goddard Distributed Active Archive Center. TRMM is an international project jointly sponsored by the Japan National Space Development Agency (NASDA) and the U.S. National Aeronautics and Space Administration (NASA) Office of Earth SciencesGoogle Scholar
  28. Neuman BR, Rahbek ML (2007). Modeling the groundwater catchment of the Sian Ka’an Reserve, Quintana Roo. Association for Mexican Cave Studies. Bulletin 18. AMCS bulletin publicationGoogle Scholar
  29. Olmsted I, Duran R (1990) Vegetación de Sian Ka’an. In: Navarro D, Robinson JG (eds) Diversidad biológica de la Reserva de la Biósfera de Sian Ka’an, Quintana Roo, Mexico. Centro de Investigaciones de Quintana Roo, Quintana Roo, pp 1–12Google Scholar
  30. Perry E, Velazques-Oliman G, Marin L (2002) The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula, Mexico. International Geology Review 44:191–221CrossRefGoogle Scholar
  31. Pope K, Rejmankova E, Paris JF, Woodruff R (1997) Detecting seasonal flooding cycles in marches of the Yucatan Peninsula with SIR-C polarimetric radar imagery. Remote Sensing of Environment 59:157–166CrossRefGoogle Scholar
  32. Pozo de la Tijera C, Escobedo Cabrera JE (1999) Mamíferos terrestres de la Reserva de la Biosfera de Sian Ka’an, Quintana Roo, México. Revista de Biología Tropical 47:251–262Google Scholar
  33. RADARSAT International (1995) RADARSAT illuminated—your guide to products and services. RADARSAT International Client Services, RichmondGoogle Scholar
  34. Richards JA, Woodgate PW, Skidmore AK (1987) An explanation of enhanced radar backscattering from flooded forests. International Journal of Remote Sensing 8:1093–1100CrossRefGoogle Scholar
  35. Rio JNR, Lozano-García DF (2000) Spatial filtering of radar data (RADARSAT) for wetlands (brackish marshes) classification. Remote Sensing of Environment 73:143–151CrossRefGoogle Scholar
  36. Sass GZ, Creed IF (2008) Characterizing hydrodynamics on boreal landscapes using archived synthetic aperture radar imagery. Hydrological Processes 22:1687–1699. doi:10.1002/hyp.6736 CrossRefGoogle Scholar
  37. Southworth CS (1985) Applications of remote-sensing data, eastern Yucatan. In: Ward WC, Weidie AE, Back W (eds) Geology and Hydrogeology of the Yucatan and Quaternary Geology of Northeastern Yucatan Peninsula. New Orleans Geological Society, New Orleans, pp 12–19Google Scholar
  38. Ulaby FT, Dubois PC, van Zyl J (1996) Radar mapping of surface soil moisture. Journal of Hydrology 184:57–84CrossRefGoogle Scholar
  39. USGS (2003) Landsat: A global land-observing program fact sheet 023-03. http://egsc.usgs.gov/isb/pubs/factsheets/fs02303.html. Accessed 15 June 2008
  40. USGS (2006) Shuttle Radar Topography Mission, 3 Arc Second, Finished 2.0. Global Land Cover Facility, University of Maryland, College Park, MD, USA. Accessed 15 June 2006Google Scholar
  41. Wdowinski S, Amelung F, Miralles-Wilhelm F, Dixon TH, Carande R (2004) Space-based measurements of sheet-flow characteristics in the Everglades wetland, Florida. Geophysical Research Letters 31:L15503. doi:10.1029/2004GL020383 CrossRefGoogle Scholar
  42. Wdowinski S, Kim S-W, Amelung F, Dixon T, Miralles-Wilhelm F, Sonenshein R (2008) Space-based detection of wetlands’ surface water level changes from L-band SAR interferometry. Remote Sensing of Environment 112:681–696. doi:10.1016/j.rse.2007.06.008 CrossRefGoogle Scholar
  43. Weidie AE (1985) Geology of Yucatan Platform. In: Ward WC, Weidie AE, Back W (eds) Geology and hydrogeology of the Yucatan and quaternary geology of northeastern Yucatan Peninsula. New Orleans Geological Society Publications, New Orleans, pp 1–12Google Scholar
  44. Zebker H, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing 30:950–959CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2009

Authors and Affiliations

  • Bibi R. N. Gondwe
    • 1
  • Sang-Hoon Hong
    • 2
  • Shimon Wdowinski
    • 2
  • Peter Bauer-Gottwein
    • 1
  1. 1.Department of Environmental EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Division of Marine Geology and GeophysicsUniversity of MiamiMiamiUSA

Personalised recommendations