Advertisement

Bulletin de la Société de pathologie exotique

, Volume 104, Issue 4, pp 307–312 | Cite as

Premiers tests OMS d’évaluation de la sensibilité aux insecticides chez Anopheles gambiae et Culex quinquefasciatus à Lobito, Angola

  • J. C. TotoEmail author
  • P. Besnard
  • J. Le Mire
  • D. S. I. Almeida
  • M. A. Dos Santos
  • F. Fortes
  • V. Foumane
  • F. Simard
  • H. P. Awono-Ambene
  • P. Carnevale
Entomologie Médicale / Medical Entomology

Résumé

Les premiers tests normalisés de l’OMS effectués sur les moustiques collectés entre 2003 et 2005 dans la ville portuaire de Lobito en Angola ont permis de déterminer la sensibilité d’Anopheles gambiae et de Culex quinquefasciatus vis-à-vis du DDT 4 %, du carbosulfan 0,4 %, de la perméthrine 1 %, de la deltaméthine 0,05 % et de la cyfluthrine 0,15 %. Ces tests ont montré qu’A. gambiae (M et S) était sensible à tous les pyréthrinoïdes et au DDT dans la majorité des sites, seules les populations de San João étaient résistantes au DDT (mortalité = 89 %). Par contre, C. quinquefasciatus a été résistant à tous les insecticides (mortalité < 70 %), et particulièrement au DDT et au carbosulfan où aucune mortalité n’a été enregistrée. En conclusion, le niveau de sensibilité du vecteur majeur du paludisme (A. gambiae) permet d’augurer une bonne efficacité biologique du programme de distributions massives de moustiquaires imprégnées à longue durée d’efficacité. Par contre, la résistance de C. quinquefasciatus est à prendre sérieusement en considération, car elle pourrait limiter l’acceptabilité et l’utilisation des moustiquaires imprégnées et donc leur impact épidémiologique contre le paludisme. Les programmes de lutte antivectorielle doivent donc intégrer une composante de sensibilisation des communautés pour obtenir l’adhésion des communautés et la réduction de la transmission et la morbidité palustre.

Mots clés

Sensibilité Insecticide Anopheles gambiae Culex quinquefasciatus Lobito Angola Afrique 

Preliminary evaluation of the insecticide susceptibility in Anopheles gambiae and Culex quinquefasciatus from Lobito (Angola), using WHO standard assay

Abstract

Field collections of the most common urban mosquito vectors Anopheles gambiae and Culex quinquefasciatus were carried out in June 2003, March 2004 and November 2005 to gather preliminary data on the insecticide susceptibility in mosquitoes from Lobito (Angola) using the WHO standard bioassays. Bioassays were performed on F0 adults emerging from the field larval collections and on unfed adults from landing catches on volunteers. Batches of mosquitoes from three selected locations (Alto Liro, San Jao and Bela Vista) were exposed for 1 hour to several insecticides such as DDT 4%, carbosulfan 0.4%, permethrin 1%, deltamethrin 0.05% and cyfluthrin 0.15%, in order to estimate the immediate knockdown times (kdT50 and kdT95) and the mortality rate after exposure. The results revealed that mosquito susceptibility to insecticides varied depending on the insecticide, the site and the period of collection. The main local malaria vector A. gambiae (both M and S forms) was basically resistant to DDT and susceptible to all pyrethoids, regardless of the period and the site of collections. The overall mortality rate due to DDT was 73% in Alto Liro, 89% in San Jao and varied depending on the period in Bela Vista between 95% in March 2004 and 100% in November 2005. The mortality due to pyrethoids was 100% at all locations, with the kdT50 and KdT95 times ranging between 9 and 16 minutes and between 18 and 29 minutes, respectively. Concerning the C. quinquefasciatus, populations from Yard and Caponte were resistant to all insecticides tested; the mortality rate was 40% with deltamethrin and 70% with permethrin, while no lethal effect was observed with DDT or carbosulfan. In conclusion, despite its probable high resistance to DDT, the main local malaria vector A. gambiae remained fully susceptible to pyrethroids. This could forecast a good biological efficacy of the scheduled vector control interventions in Angola, based on a large-scale distribution of long-lasting, insecticide-treated nets and on the implementation of indoor residual spraying. The local vector control programme must include well-adapted IEC campaigns and full participation of the community for better management of the insecticide resistance in targeted mosquitoes and for better control of malaria vector populations.

Keywords

Susceptibility Insecticide Anopheles gambiae Culex quinquefasciatus Lobito Angola Africa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Brooke BD, Kloke G, Hunt RH, et al (2001) Bioassay and biochemical analyses of insecticide resistance in southern african Anopheles funestus (diptera: culicidae). Bull Entomol Res 91(4):265–272PubMedCrossRefGoogle Scholar
  2. 2.
    Calzetta M, Santolamazza F, Carrara GC, et al (2008) Distribution and chromosomal characterization of the Anopheles gambiae complex in Angola. Am J Trop Med Hyg 78(1):169–175PubMedGoogle Scholar
  3. 3.
    Chandre F, Manguin S, Brengues C, et al (1999) Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia 41(1–3):319–322PubMedGoogle Scholar
  4. 4.
    Coetzee M, Van Wyk P, Booman M, et al (2006) Insecticide resistance in malaria vector mosquitoes in a gold mining town in Ghana and implications for malaria control. Bull Soc Pathol Exot 99(5):400–403 [http://www.pathexo.fr/documents/articlesbull/T99-5-2857-b-4p.pdf]PubMedGoogle Scholar
  5. 5.
    Cuamba N, Choi SK, Townson H (2006) Malaria vectors in Angola: distribution of species and molecular forms of the Anopheles gambiae complex, their pyrethroid insecticide knockdown resistance (kdr) status and Plasmodium falciparum sporozoite rates. Malar J 5:2PubMedCrossRefGoogle Scholar
  6. 6.
    Curtis CF (2001) Insecticide resistance and mosquito-borne disease. Lancet 357(9257):656PubMedCrossRefGoogle Scholar
  7. 7.
    Drame PM, Poinsignon A, Besnard P, et al (2010) Human antibody response to Anopheles gambiae saliva: an immunoepidemiological biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Am J Trop Med Hyg 83(1):115–121PubMedCrossRefGoogle Scholar
  8. 8.
    Etang J, Fondjo E, Chandre F, et al (2006) First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg 74(5):795–797PubMedGoogle Scholar
  9. 9.
    Fanello C, Petrarca V, della Torre A, et al (2003) The pyrethroid knockdown resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within Anopheles gambiae S.S. Insect Mol Biol 12(3):241–245PubMedCrossRefGoogle Scholar
  10. 10.
    Gama B, Pereira-Carvalho G, Lutucuta Kosi F, et al (2010) Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene. Malar J 9:174.PubMedCrossRefGoogle Scholar
  11. 11.
    Gariou J, Mouchet J (1961) Apparition d’une souche d’Anopheles gambiae résistante à la dieldrine dans la zone de la campagne antipaludique du Sud-Cameroun. Bull Soc Pathol Exot Filiales 54:870–875PubMedGoogle Scholar
  12. 12.
    Hargreaves K, Koekemoer LL, Brooke BD, et al (2000) Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 14(2):181–189PubMedCrossRefGoogle Scholar
  13. 13.
    Hemingway J, Field L, Vontas J (2002) An overview of insecticide resistance. Science 298(5591):96–97PubMedCrossRefGoogle Scholar
  14. 14.
    Henry MC, Assi SB, Rogier C, et al (2005) Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Cote-d’Ivoire. Am J Trop Med Hyg 73(5):859–864PubMedGoogle Scholar
  15. 15.
    Himeidan YE, Chen H, Chandre F, et al (2007) Short report: permethrin and DDT resistance in the malaria vector Anopheles arabiensis from eastern Sudan. Am J Trop Med Hyg 77(6):1066–1068PubMedGoogle Scholar
  16. 16.
    Janeira F, Vicente JL, Kanganje Y, et al (2008) A primerintroduced restriction analysis-polymerase chain reaction method to detect knockdown resistance mutations in Anopheles gambiae. J Med Entomol 45(2):237–241PubMedCrossRefGoogle Scholar
  17. 17.
    L’atlas du continent africain (1993) Le groupe Jeune Afrique, Éditions du Jaguar, 175pGoogle Scholar
  18. 18.
    Mabaso ML, Sharp B, Lengeler C (2004) Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying. Trop Med Int Health 9(8):846–856PubMedCrossRefGoogle Scholar
  19. 19.
    Moreno M, Vicente JL, Cano J, et al (2008) Knockdown resistance mutations (kdr) and insecticide susceptibility to DDT and pyrethroids in Anopheles gambiae from Equatorial Guinea. Trop Med Int Health 13(3):430–433PubMedCrossRefGoogle Scholar
  20. 20.
    N’Guessan R, Corbel V, Akogbéto M, Rowland M (2007) Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 13(2):199–206PubMedCrossRefGoogle Scholar
  21. 21.
    Pinto EA, Alves JG (2008) The causes of death of hospitalized children in Angola. Trop Doct 38(1):66–67CrossRefGoogle Scholar
  22. 22.
    Randriantsimaniry D (1995) Lutte antivectorielle dans l’épidémie des plateaux de Madagascar. Santé 5:392–396PubMedGoogle Scholar
  23. 23.
    Rowe AK, de León GF, Mihigo J, et al (2009) Quality of malaria case management at outpatient health facilities in Angola. Malar J 8(1):275PubMedCrossRefGoogle Scholar
  24. 24.
    Santolamazza F, Calzetta M, Etang J, et al (2008) Distribution of knockdown resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar J 7:74PubMedCrossRefGoogle Scholar
  25. 25.
    Sharp BL, Ridl FC, Govender D, et al (2007) Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea. Malar J 6:52PubMedCrossRefGoogle Scholar
  26. 26.
    Sharp BL, Craig MH, Mnvaza A, et al (2001) Review of malaria in South Africa. Durban, Health System Trust 2001.Google Scholar
  27. 27.
    Somandjinga M, Lluberas M, Jobin WR (2009) Difficulties in organizing first indoor spray programme against malaria in Angola under the President’s Malaria Initiative. Bull World Health Organ 87(11):871–874PubMedCrossRefGoogle Scholar
  28. 28.
    WHO (1998) Tests procedures for insecticide resistance monitoring in malaria vectors, bioefficacy and persistence of insecticides on treated surfaces. Report of the WHO informal Consultation, Geneva, WHO/MAL/98, 43pGoogle Scholar

Copyright information

© Springer Verlag France 2011

Authors and Affiliations

  • J. C. Toto
    • 1
    Email author
  • P. Besnard
    • 2
  • J. Le Mire
    • 2
  • D. S. I. Almeida
    • 3
  • M. A. Dos Santos
    • 3
  • F. Fortes
    • 4
  • V. Foumane
    • 1
  • F. Simard
    • 5
  • H. P. Awono-Ambene
    • 1
  • P. Carnevale
    • 5
  1. 1.Organisation de coordination pour la lutte contre les endémies en Afrique centraleOceac YaoundéCameroun
  2. 2.Service médical de la Société nationale de métallurgie (Sonamet)LobitoAngola
  3. 3.Programme de contrôle antipaludique de Sonamet (MCP Sonamet)LobitoAngola
  4. 4.Programme national de lutte contre le paludismeLuandaAngola
  5. 5.Institut de recherche pour le développement (IRD)Montpellier cedexFrance

Personalised recommendations