Advertisement

Carbonates and Evaporites

, Volume 34, Issue 4, pp 1689–1702 | Cite as

Mineralogical and geochemical behavior of heated natural carbonate-apatite of the Ypresian series, Maknassy-Mezzouna basin, central Tunisia

  • Faten Jaballi
  • Mongi FelhiEmail author
  • Mahmoud Khelifi
  • Nabil Fattah
  • Kamel Zayani
  • Noureddine Abbes
  • Brahim Elouadi
  • Ali Tlili
Original Article
  • 32 Downloads

Abstract

Ypresian phosphate deposits of the Meknassy-Mezzouna basin (central part of Tunisia) correspond to an alternation of thick phosphatic layers and dolomitic marls. The present work aimed to follow the mineralogical and geochemical behavior of natural phosphate during thermal treatment. The representative sample of phosphate was investigated using XRD, chemical and infrared analyses, in addition to crystallite size computed from XRD patterns. The data obtained show that the sample is mostly constituted of carbonate fluorapatite associated with dolomite, calcite, opal CT, quartz, feldspars and few amounts of all clay minerals. XRD data of the heated samples showed a gradual removal of calcite, dolomite, opal CT, quartz and feldspars and a progressive concentration of carbonate-fluorapatite. This later is featured by slight shifting of their narrow XRD peaks towards low angles due to the increase of the unit cell volume of carbonate fluorapatite. This behavior is due to high PO43− content, which partially replaced by CO32−, rather than, the persistence of CO32− ions, which related to calcite mineral. This idea is confirmed by intense characteristic bands of PO43− ions recognized in infrared spectra of samples after heat treatment against large bands of CO32− of intact sample.

Keywords

Natural phosphate Thermal treatment Carbonates-fluorapatite Substitution, PO43− ions, CO32− ions 

Notes

Acknowledgements

This work was supported by the Georesources Laboratory, Materials, Environment and Global Changes, Science faculty of Sfax, Sfax University, The authors wish to acknowledge Engineers of Research Center of Métlaoui: Phosphate Company of Gafsa. The authors are thankful to Noureddine Abbes, engineer at the “Tunisian chemical group” for chemical analyses.

References

  1. Abed AM, Arouri K, Boreham CJ (2005) Source rock potential of the phosphorite bituminous chalk-marl sequence in Jordan. Mar Pet Geol 22:413–425CrossRefGoogle Scholar
  2. Banno H, Kariya B, Isu N, Ogawa M, Miwa S, Sawada K, Tsuge J, Imaizumi S, Kato H, Tokutake K, Deguchi S (2014) Effect of tio2 crystallite diameter on photocatalytic water splitting rate. Green Sustain Chem 4:87–94CrossRefGoogle Scholar
  3. Béji-Sassi A (1999) Les phosphates dans les bassins paléogènes de la partie méridionale de l’axe Nord-Sud (Tunisie). Thèse Doctorat. Etat, Université, TunisieGoogle Scholar
  4. Belayouni H, Beja-Sassi A (1987) Excursion guidebook. In: International Field Workshop and Symposium: Genesis of the Tethyanphosphorites and associated petroleum source rocks, Tunisia. International Geoscience Program 156, Phosphorites, p 131Google Scholar
  5. Birken I, Bertucci M, Chappelin J, Jorda E (2016) Quantification of impurities, including carbonates speciation for phosphates beneficiation by flotation. Procedia Eng 138:72–84CrossRefGoogle Scholar
  6. Boulemia S, Hamimed M, Bouhlel S, Bejaoui J (2015) Petro-mineralogical analysis of sedimentary phosphate of marine origin, case of the locality of El Kouif (Algerian-Tunisian Confines). Open J Geol 5:156–173CrossRefGoogle Scholar
  7. Chaabani F (1995) Dynamique de la partie orientale du bassin de Gafsa au Crétacé et au Paléogène: Etude minéralogique et géochimique de la série phosphatée Eocène, Tunisie méridionale. Thèse Doctorat, Université. Tunis II. TunisieGoogle Scholar
  8. Crosby CH, Bailey JV (2012) The role of microbes in the formation of modern and ancient phosphate mineral deposits. Front Microbiol 3:241CrossRefGoogle Scholar
  9. El Feki H, Rey C, Vignoles M (1991) Carbonate ions in apatites: infrared investigations in the ν4 CO3 domain. Calcif Tissue Int 49:269–274CrossRefGoogle Scholar
  10. Elliott JC, Wilson RM, Dowker SEP (2002) Apatite structures. Adv X-ray Anal 45:172–181Google Scholar
  11. Emsbo P, Mc Laughlin PI, Breit GN, du Bray EA, Koenig AE (2014) Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Res 27:776–785CrossRefGoogle Scholar
  12. Felhi (2010) Les niveaux intercalaires de la série yprésienne du bassin Gafsa-Métlaoui : Apports de la minéralogie des argiles et de lagéochimie de la matière organique résiduelle à la reconstitutionpaléoenvironnementale. Ph.D. thesis, Sfax University, p 184Google Scholar
  13. Felhi M, Tlili A, Montacer M (2008) Geochemistry, petrographic and spectroscopic studies of organic matter of clay-associated kerogen of Ypresian series: Gafsa-Metlaoui phosphatic basin, Tunisia. Resour Geol 59:428–436CrossRefGoogle Scholar
  14. Fleet ME, Liu X (2005) Local structure of channel ions in carbonate apatite. Biomaterials 26:7548–7554CrossRefGoogle Scholar
  15. Fleet ME, Liu X, King PL (2004) Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am Miner 89:1422–1432CrossRefGoogle Scholar
  16. Freeman HP, Caro JH, Heinly N (1964) Effect of calcination on the character of phosphate rock. J Agric Food Chem 12:479–486CrossRefGoogle Scholar
  17. Frost RL, Scholz R, Lopes A, Xi Y (2014) A vibrational spectroscopic study of the phosphate mineral whiteite CaMn++Mg2Al2(PO4)4(OH)2.8(H2O). Spectrochim Acta Part A Mol Biomol Spectrosc 124:243–248CrossRefGoogle Scholar
  18. Frost RL, Scholz R, Lopes A (2016) A Raman and infrared spectroscopic study of the phosphate mineral laueite. Vib Spectrosc 82:31–36CrossRefGoogle Scholar
  19. Garnit H, Bouhlel S, Barca D, Chtara C (2012) Application of LA–ICP–MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: insights from trace elements and REE into paleo-depositional environments. Chem Erde 72:127–139CrossRefGoogle Scholar
  20. Gnanasaravanan S, Rajkumar P (2013) Characterization of minerals in natural and manufactured sand in Cauvery River belt, Tamilnadu, India. Infrared Phys Technol 58:21–31CrossRefGoogle Scholar
  21. Guoa Z, Fanb J, Zhanga J, Kanga Y, Liua H (2015) Sorption heavy metal ions by activated carbons with well-developed microporosity and amino groups derived from Phragmites australis by ammonium phosphates activation. J Taiwan Inst Chem Eng 58:290–296CrossRefGoogle Scholar
  22. Hachicha T, Heil A, Smykatz-Kloss W (2003) Vergleichende mineralogische Untersuchungen an zwei tunesischen Phosphorit-Vorkommen. Chemie der. Erde-Geochemistry 63(3):247–263Google Scholar
  23. Hakkou R, Benzaazoua M, Bussière B (2016) Valorization of phosphate waste rocks and sludge from the moroccan phosphate mines: challenges and perspectives. Procedia Eng 138:110–118CrossRefGoogle Scholar
  24. Jaballi F, Felhi M, Tlili A, Fattah N (2017) Mineralogical and Geochemical features of the Paleocene-Eocene phosphate series, Maknassy-Mezzouna basin, central Tunisia. In: Poster presentation in the 1st Atlas georesources international congress (AGIC), March 2017, vol 1. Hammamet, Tunisia, p 230Google Scholar
  25. Knudsen AC, Gunter ME (2002) Sedimentary phosphorites an example: phosphoria formation, Southeastern Idaho, USA. In: Kohn MJ, Rakovan J, Hughes J (eds) Reviews in mineralogy and geochemistry, phosphates: geochemical, geobiological, and materials importance, vol 48. Reviews in Mineralogy and Geochemistry, New York, pp 363–389CrossRefGoogle Scholar
  26. Lafi A, Felhi M, Jaballi F, Guernit, F, Trabelsi H, Zayani K, Tlili A (2016) Exploration et cartographie géologique des séries phosphatées du Jebel Jebes (Région de Maknassy, Tunisie Centrale). Annales des Mines et de la Géologie no 47, 90–99Google Scholar
  27. Leventouri T, Chakoumakos BC, Moghaddam HY, Perdikatsis V (2000) Powder neutron diffraction studies of a carbonate fluorapatite. J Mater Res 15:511–517CrossRefGoogle Scholar
  28. Nasiri-Tabrizi B, Fahami A (2014) Mechanosynthesis of nanosized B-type carbonated fluorapatite. Mater Lett 134:42–46CrossRefGoogle Scholar
  29. Nathan Y (1984) The mineralogy and geochemistry of phosphorites. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer, Berlin, pp 275–291CrossRefGoogle Scholar
  30. Olszak-Humienik M, Jablonski M (2015) Thermal behavior of natural dolomite. J Therm Anal Calorim 119:2239–2248CrossRefGoogle Scholar
  31. Ozer AK, Gulaboglu MS, Bayrakceken S, Weisweiler W (2006) Changes in physical structure and chemical composition of phosphate rock during calcination in fluidized and fixed beds. Adv Powder Technol 17:481–494CrossRefGoogle Scholar
  32. Pan Y, Fleet M (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Miner Geochem 48:13–49CrossRefGoogle Scholar
  33. Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin, pp 993CrossRefGoogle Scholar
  34. Pasteris JD, Yoder CH, Wopenka B (2014) Molecular water in nominally unhydrated carbonated hydroxylapatite: the key to a better understanding of bone mineral. Am Mineral 99:16–27CrossRefGoogle Scholar
  35. Piga G, Solinas G, Thompson TJU, Brunetti A, Malgosa A, Enzo S (2013) Is X-ray diffraction able to distinguish between animal and human bones? J Archaeol Sci 40:778–785CrossRefGoogle Scholar
  36. Sader MS, Lewi K, Soares GA, LeGeros RZ (2013) Simultaneous incorporation of magnesium and carbonate in apatite: effect on physico-chemical properties. Mater Res 16(4):779–784CrossRefGoogle Scholar
  37. Sassi S (1974) La sédimentation phosphatée aux paléocène dans le Sud et dans le Centre Ouest. Ph.d. thesis, Université Paris Orsay, 224Google Scholar
  38. Sharifnabi A, Yekta BE, Fathi MH, Hossainalipour M (2014) Synthesis and characterization of nanosized magnesium-doped fluorapatite powder and coating for biomedical application. J Sol–Gel Sci Technol 74:66–77CrossRefGoogle Scholar
  39. Straaten PV (2007) Agrogeology: the use of rocks for crops. Enviroquest limited, CambridgeGoogle Scholar
  40. Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, Tenhuisen KS (2004) Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonatesubstitution. J Solid State Chem 177:793–799CrossRefGoogle Scholar
  41. Svoboda K (1989) The lower tertiary phosphate deposits of Tunisia. In: Notholt AJG, Sheldon RP, Davidson DF (ed) Phosphate deposits of the world. Phosphate Rock Resources, vol 2. Cambridge University Press, Cambridge, pp 284–288Google Scholar
  42. Tlili A, Felhi M, Montacer M (2010) Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, southwestern Tunisia. Clay Miner 58:573–558CrossRefGoogle Scholar
  43. Udvardi B (2014) Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a andslide area, Hungary. Sed Geol 313:1–14CrossRefGoogle Scholar
  44. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143CrossRefGoogle Scholar
  45. Yi H, Balan E, Gervais C, Segalen L, Fayon F, Roche D, Person A, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Babonneau F (2013) A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am Miner 98:1066–1069CrossRefGoogle Scholar
  46. Zaïer A, Beji-Sassi A, Sassi S, Moody RTJ (1998) Basin evolution and deposition during the early Paleocene in Tunisia. In: Macgregor DS, Moody RTJ, Clark-Lowes DD (eds) Petroleum geology of North Africa, vol 132. Geological Society London Special Publications, London, pp 375–393Google Scholar
  47. Ziv A, Tamir A (1993) Calcination of phosphate in impinging streams. Part 1: development, theory and modelling. Can J Chem Eng 71:771–783CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Faten Jaballi
    • 1
  • Mongi Felhi
    • 1
    Email author
  • Mahmoud Khelifi
    • 2
  • Nabil Fattah
    • 3
  • Kamel Zayani
    • 3
  • Noureddine Abbes
    • 4
  • Brahim Elouadi
    • 5
  • Ali Tlili
    • 1
  1. 1.Georesources, Materials, Environment and Global Changes Laboratory, Science Faculty of SfaxSfax UniversitySfaxTunisia
  2. 2.Eau-Energie-Environnement LaboratoryUniversity of SfaxSfaxTunisia
  3. 3.Gafsa Phosphate Company, Research CenterMetlaouiTunisia
  4. 4.Research Direction of Tunisian Chemical GroupGabèsTunisia
  5. 5.Laboratory of Chemical Analysis Elaboration and Materials, Engineering (LEACIM)Université de La RochelleLa Rochelle Cedex 01France

Personalised recommendations