Advertisement

Carbonates and Evaporites

, Volume 34, Issue 4, pp 1391–1413 | Cite as

Hydro-geophysical and geochemical studies of the aquifer systems in El Kef region (Northwestern Tunisia)

  • Yosra Ayadi
  • Belgacem RedhaouniaEmail author
  • Naziha Mokadem
  • Karim Zighmi
  • Mohamed Dhaoui
  • Younes Hamed
Original Article
  • 76 Downloads

Abstract

In El Kef region, Northwestern Tunisia, the evolution of the agricultural and industrial sectors has exacerbated the need for water which caused a significant increase in groundwater extraction. In this context, several geologic and geophysical studies conducted on the groundwater resources of the concerning area were meant to give us insight into the geometry of the reservoirs and structural architecture of the basin and to identify the various reservoirs such as the Mio-Plio-Quaternary, the Lower Eocene and the Campanian–Maastrichtian aquifers. In this study, we used the geochemical study and analysis of gravity data (Horizontal and vertical derivative, horizontal gravity gradient maxima…) to improve the knowledge of the dip and direction fault and the geological structures in El Kef region (NW Tunisia) that control the groundwater hydrodynamic. Furthermore, the techniques of horizontal gradient and upward extension were applied to determine the gravity lineaments that represent the location of density contrasts and to locate the various faults that contribute to the structuring of the study area. Additionally, this study aims to assess the spatio-temporal evolution of the hydrodynamic parameters of the aquifers and to characterize the groundwater mineralization (salinity, chemical facies relationship, etc.). Our study showed the presence of four types of water facies: Ca–Mg–SO4; Na–Cl–NO3; Ca–Mg–HCO3 and Na–K–HCO3. The isotopic study is used to provide some information about the groundwater recharge and to define the different sources of water mixing. That way we could have better understanding to the hydrologic cycle and to the paleoclimate of the study area. Generally, the geochemically evolved groundwaters of the aquifer systems of El Kef region are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under cold climate and high altitude. Conversely, the continuous increase of the annual mean temperature and the decrease of precipitations have been observed for the second half of the 20th century in North Africa. It is likely related to the warmer and drier conditions associated with the climate change phenomenon.

Keywords

Hydrogeology Gravity data Hydrochemical Isotopic study El Kef Tunisia 

Notes

Acknowledgements

The authors are very thankful to the anonymous reviewers who greatly improved an early version of the manuscript. The authors would also like to extend their sincere appreciation to the Tunisian National Office of Mine (ONM), the Laboratory of Water, Energy and Environment: L3E of the National Engineering School of Sfax (Tunisia), the laboratory of Higher Institute of Sciences and Technologies of Waters of Gabes (ISSTEG), the research center of the Tunisian Chemical Group (GCT) of Gabes and of M’Dhilla (Gafsa/Tunisia) and the Isotope Hydrology Laboratory of the International Atomic Energy Agency in Vienna (Austria).

References

  1. Abderbi J, Khattach D (2010) Contribution de la gravimétrie à l’étude de la structure des Hauts Plateaux (Maroc oriental). Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre 32:19–30Google Scholar
  2. Amalvict A, Hinderer J, Mäkinen J, Rosat S, Rogister Y (2004) Longterm and seasonal gravity changes at the Strasbourg station and their relation to crustal deformation and hydrology. J Geodyn 38(3–5):343–353.  https://doi.org/10.1016/j.jog.2004.07.010 CrossRefGoogle Scholar
  3. Andreo B, Linan C, Carrasco F, Jimenez de Cisneros C, Caballero F, Mudry J (2004) Influence of rainfall quantity on the isotopic composition (18O and2H) of water in mountainous areas. Application for groundwater research in the Yunquera-Nieves karst aquifers (S Spain). J Hydrol 19:561–574Google Scholar
  4. Asfahani J (2007) Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid Region in Khanasser Valley, Syria. J Arid Environ 68(1):31–52.  https://doi.org/10.1016/j.jaridenv.2006.03.028 CrossRefGoogle Scholar
  5. Ayadi Y (2015) Étude hydrogéologique et géochimique des réservoirs hydriques du bassin de Bled Abida-El Houdh (NW Tunisien-région du Kef). Mémoire de Mastère de Géologie Appliquée, Faculté des Sciences de Bizerte, p 145Google Scholar
  6. Ayadi Y, Mokadem N, Redhaounia B, Hadji R, Hamed Y (2016) Hydrogeochemical and isotopic characterization of the Ghar Kris area (northern Tunisia). Colloque international “Terre et Eau”, 16-18/05/2016, Annaba, AlgérieGoogle Scholar
  7. Ayadi Y, Redhaounia B, Mokadem N, Harrabi S, Hamed Y (2017) Study of the karst system of the teboursouk region (northwestern tunisia). In: The 1st International Symposium Water Resources and Environmental Impact Assessment in North Africa (WREIANA 2017), 24-26/03/2017, Gafsa, TunisiaGoogle Scholar
  8. Ball JW, Nordstrom DK (1991) User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. U.S. Geological survey open-file report, vol 91–183, pp 1–189Google Scholar
  9. Besser H, Mokadem N, Redhouania B, Rhimi N, Khlifi F, Ayadi Y, Omar Z, Bouajila A, Hamed Y (2017) GIS-based evaluation of groundwater quality and estimation of soil salinization and land degradation risks in an arid Mediterranean site (SW Tunisia). Arab J Geosci 10:350.  https://doi.org/10.1007/s12517-017-3148-0 CrossRefGoogle Scholar
  10. Besser H, Mokadem N, Redhouania B, Rhimi N, Khlifi F, Ayadi Y, Omar Z, Bouajila A, Hamed Y (2018) GIS-based evaluation of groundwater quality and estimation of soil salinization and land degradation risks in arid Mediterranean site (SW Tunisia). Arab J Geosci.  https://doi.org/10.1007/s12517-017-3148-0 CrossRefGoogle Scholar
  11. Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Annale des mines et de la géologie, p 345Google Scholar
  12. Chikhaoui M (1988) Succession distension-compression dans les sillons tunisien, secteur de Nebeur, El Kef, Tunisie centre nord. Rôle des extrusions triasiques précoces lors des serrages alpins. Thèse 3ème cycle, Univ. Nice, p 150Google Scholar
  13. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York, p 328Google Scholar
  14. Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta 60:3359–3360CrossRefGoogle Scholar
  15. Coplen TB, Wildman J, Chen J (1991) Improvement in the gaseous hydrogen-water equilibration technique for hydrogen isotopes ration analysis. Anal Chem 63:910–912CrossRefGoogle Scholar
  16. Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  17. Dansgaard W (1964) Stable isotopes in precipitations. Tellus 4:436–468Google Scholar
  18. El Gayar A, Hamed Y (2018) Climate change and water resources management in Arab Countries. In: Springer International Publishing AG-Euro-Mediterranean and surrounding regions, advances in science, technology & innovation.  https://doi.org/10.1007/978-3-319-70548-4-31
  19. Epstein S, Mayeda TK (1953) Variations of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  20. Farhat B, Benassi R, Jallouli Ch, Ab Ben Mammou (2010) Contribution de la gravimétrie à l’étude de la structure de la plaine de Mornag (nord est de la Tunisie): implications hydrogéologiques. Hydrol Sci J 55(8):1396–1404.  https://doi.org/10.1080/02626667.2010.530100 CrossRefGoogle Scholar
  21. Faure G (1986) Principles of isotope geology. Wiley, New York, p 589Google Scholar
  22. Generale Geosciences Service (2007) Projet de mis en bouteille de l’eau du forage Aïn M’rada pour le compte de la société la source SA/R40-07, p 38Google Scholar
  23. Hachemi H (1982) Contribution à l’étude hydrogéologique du plateau du Sra Ouertane. Thèse de Doctorat de spécialité, Université des Sciences et Techniques du Languedoc, p 96Google Scholar
  24. Hadji R, Yacine A, Hamed Y (2018) Using GIS and RS for slope movement susceptibility mapping: comparing AHP, LI and LR methods for the Oued Mellah Basin, NE Algeria. In: Recent advances in environmental science from the Euro-Mediterranean and surrounding regions.  https://doi.org/10.1007/978-3-319-70548-4-536
  25. Hamed Y, Redhaounia B, Sâad AB, Hadji R, Zahri F, Zighmi K (2017a) Hydrothermal waters from karst aquifer: case study of the Trozza basin (Central Tunisia). J Tethys 5(1):033–044Google Scholar
  26. Hamed Y, Redhaounia B, Ben Sâad A, Hadji R, Zahri F (2017b) Groundwater Inrush caused by the fault reactivation and the climate impact in the mining Gafsa Basin (Southwestern Tunisia). J Tethys 5(2):154–164Google Scholar
  27. Hamed Y, Hadji R, Redhaounia B, Zighmi K, Bâali F, El Gayar A (2018) Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendation. Euro-Mediterranean J Environ Integr.  https://doi.org/10.1007/s41207-018-0063-z CrossRefGoogle Scholar
  28. Hamdi S (2006) Étude hydrogéologique des deux synclinaux d’El Houdh et de Kef Rgueb (Tunisie Nord-Occidentale). Mémoire de Mastère de Géologie Appliquée, Faculté des Sciences de Bizerte, p 125Google Scholar
  29. Hamed Y (2004) Caractérisation hydrogéologique, hydrochimique et isotopique des eaux souterraines de la région du Kef (Nord Ouest Tunisien). Mémoire DEA, Faculté des Sciences de Sfax, p 180Google Scholar
  30. Hamed Y, Ben Dhia H (2010) Étude géochimique et isotopique de la nappe phréatique de la plaine du Kef (Nord-Ouest tunisien). Sécherèsse 21(2):121–130Google Scholar
  31. Hamed Y, Dhahri F (2013) Hydro-geochemical and isotopic composition of groundwater, with emphasis on sources of salinity, in the aquifer system in Northwestern Tunisia. J Afr Earth Sci 83(2013):10–24CrossRefGoogle Scholar
  32. Hamed Y, Dassi L, Ahmadi R, Dhia HB (2008) Geochemical and isotopic study of the multilayer aquifer system in the Moulares-Redayef basin, southern Tunisia/etude géochimique et isotopique du système aquifère multicouche du bassin de Moulares-Redayef, Sud tunisien. Hydrol Sci J 53(6):1241–1252CrossRefGoogle Scholar
  33. Hamed Y, Ahmadi R, Demdoum A, Bouri S, Gargouri I, Ben Dhia H, Al Gamal S, Laouar R, Choura A (2014) Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: a case study of Gafsa mining basin-Southern Tunisia. J Afr Earth Sci 100(2014):418–436CrossRefGoogle Scholar
  34. Imanishi Y, Kokubo K, Tatehata H (2006) Effect of underground water on gravity observation at Matsushiro, Japan. J Geodyn 41:221–226.  https://doi.org/10.1016/j.jog.2005.08.031 CrossRefGoogle Scholar
  35. Inoubli A (2014) Contribution des approches hydrogéologiques et géochimiques à l’étude des aquifères du bassin de Sra Ouertane (El Kef NW Tunisien). Mémoire de Master. Faculté des Sciences de Bizerte, p 90Google Scholar
  36. Jiribi L (1997) Contribution à la mise en évidence de l’alimentation du Complexe Terminal à partir de la chaine de Metlaoui-Gafsa. DEA. Faculté des Sciences de Tunis, p 140Google Scholar
  37. Kadri A, Ben Haj Ali M (1999) Éléments de réflexion sur les linéaments tectoniques Est-Ouest et Nord-Sud et les grabens associés en Tunisie septentrionale: Notes du service géologique de Tunisie, no. 65, pp 131–140Google Scholar
  38. Karroum M, Ab El Mandour, Khattach D, Cassas A, Himi M, Rochdane S, Laftouhi N, Khalila N (2014) Fonctionnement hydrogéologique du bassin de la Bahira (Maroc central): apport de l’analyse des données géologiques et gravimétriques. Revue canadienne des sciences de la Terre 51(5):517–526.  https://doi.org/10.1139/cjes-2013-0130 CrossRefGoogle Scholar
  39. Keleko T, Tadjou J, Kamguia J, Tabod T, Feumoe A, Kenfack J (2013) Groundwater investigation using geoelectrical method: a case study of the western region of Cameroon. J Water Res Protect 5(6):633–641.  https://doi.org/10.4236/jwarp.2013.56064 CrossRefGoogle Scholar
  40. Mokadem N, Younes H, Hfaid M, Ben Dhia H (2015) Hydrogeochemical and isotope evidence of groundwater evolution in El Guettar Oasis area, Southwest Tunisia. Carbonates Evaporites.  https://doi.org/10.1007/s13146-015-0235-8 CrossRefGoogle Scholar
  41. Mokadem N, Demdoum A, Hamed Y, Bouri S, Hadji R, Boyce A, Laouar R, Sâad A (2016) Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin Central Tunisia. J Afr Earth Sci 114(2016):174–191CrossRefGoogle Scholar
  42. Mokadem N, Boughariou E, Mudarra M, Ben brahim F, Andreo B, Hamed Y, Bouri S (2018) Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: case study of North Gafsa Basin (Central Tunisia). J Afr Earth Sci.  https://doi.org/10.1016/j.jafrearsci.2018.02.007 CrossRefGoogle Scholar
  43. Morelli C (1976) Modern standards for gravity surveys. Geophysics 41:1051CrossRefGoogle Scholar
  44. Naujoks M, Weise A, Kroner C, Jahr T (2008) Detection of small hydrological variations in gravity by repeated observations with relative gravimeters. J Geodesy 82(9):543–553CrossRefGoogle Scholar
  45. Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Hp Sun, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geodesy 79(10–11):573–585.  https://doi.org/10.1007/s00190-005-0014-8 CrossRefGoogle Scholar
  46. Ouled Mohamed S.B (2001) Caractérisation hydrogéologique et géochimique des aquifères des systèmes aquifères des bassins de Bled Abida et de Lorbeus. Diplôme d’ingénieur d’état, ENIS-Sfax, p 120Google Scholar
  47. Perthuisot V (1978) Dynamique et pétrogenèse des extrusions triasiques en Tunisie septentrionale. Thèse Sciences, Univ. Pierre et Marie Curie, Paris, Presses école normale supérieure, p 312Google Scholar
  48. Redhaounia B, Aktarakçi H, Batobo OI, Gabtni H, Khomsi S, Bédir M (2015a) Hydrogeophysical interpretation of fractured and karstified limestones reservoirs: a case study from Amdoun region (NW Tunisia) using electrical resistivity tomography, Digital Elevation Model (DEM) and hydrogeochemical approaches. J Afr Earth Sci.  https://doi.org/10.1016/j.jafrearsci CrossRefGoogle Scholar
  49. Redhaounia B, Ilondo BO, Gabtni H, Khomsi S, Bédir M (2015b) Electrical resistivity tomography (ERT) applied to karst carbonate aquifers: case study from Amdoun, Northwestern Tunisia. Geophys Pure Appl.  https://doi.org/10.1007/s00024-015-1173-z CrossRefGoogle Scholar
  50. Redhaounia B, Bédir M, Gabtni H, Ilondo BO, Dhaoui M, Chabaane A, Khomsi S (2016) Hydro-geophysical characterization for groundwater resources potential of fractured limestone reservoirs in Amdoun Monts (North-western Tunisia). J Appl Geophys 128(2016):150–162.  https://doi.org/10.1016/j.jappgeo.2016.03.005 CrossRefGoogle Scholar
  51. Sacks LA Tihansky AB (1996) Geochemical and isotopic composition of groundwater, with emphasis on sources of sulfate, in the upper Floridan aquifer and intermediate aquifer system in southwest Florida. US Geol. Surv. Water-Resour. Invest. Rep. 96-4146Google Scholar
  52. Sehli A (1987) Contribution de la prospection électrique à l’étude hydrogéologique des aquifères calcaires en Tunisie Centrale cas du plateau de Sra Ouartane Sud, cas de la plaine de Gafsa Nord. Th. 3e cycle, Sci.de la Terre: Hydrogéologie, Fac. Sci. Tunis, p 320Google Scholar
  53. Selvam S (2016) 1D geoelectrical resistivity survey for groundwater studies in coastal area: a case study from Pearl city, Tamil Nadu. J Geol Soc India 87:169–178. http://library.seg.org/doi/abs/10.1190/1.1442648
  54. Shimi A (2000) Potentiel en eaux minérales de la région de Sra Ouertane; Effet de compartimentage des formations carbonatées sur les ressources hydriques. DEA. Univ. Tunis II, p 155Google Scholar
  55. Singh CK, Shashtri S, Kumari R, Mukherjee S (2013) Chemometric analysis to infer hydro-geochemical processes in a semi-arid region of India. Arab J Geosci 6:2915–2932CrossRefGoogle Scholar
  56. Subyani AM (2004) Use of chloride mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environ Geol 46(6):741–749CrossRefGoogle Scholar
  57. Van Der Weijden CH, Pacheco FAL (2003) Hydrochemistry, weathering and weathering rates on Madeira Island. J Hydrol 283:122–145CrossRefGoogle Scholar
  58. Zaïer A (1984) Étude stratigraphique et tectonique et minéralogie de la série phosphatée. Thése de 3éme cycle. Fac. Sci. Univ. Tunis II, p 255Google Scholar
  59. Zébidi H (1971) Étude hydrogéologique préliminaire de la plaine de Bled Abida—El Kef (CRDA-Kef). Rapport interne, p 10Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yosra Ayadi
    • 1
    • 3
  • Belgacem Redhaounia
    • 2
    Email author
  • Naziha Mokadem
    • 3
    • 4
  • Karim Zighmi
    • 5
  • Mohamed Dhaoui
    • 2
  • Younes Hamed
    • 3
    • 6
  1. 1.Higher Institute of the Sciences and Techniques of Waters of Gabes (ISSTEG)GabèsTunisia
  2. 2.Water Researches and Technologies Center Borj-Cedria (CERTE)SolimanTunisia
  3. 3.Research Unit of Geosystems, Georesources and Geoenvironments 3G-Sciences Faculty of GabèsGabèsTunisia
  4. 4.Water, Energy and Environmental Laboratory (L3E)-National Engineers College of Sfax (Tunisia) (ENIS)SfaxTunisia
  5. 5.University of Sétif-AlgeriaSétifAlgeria
  6. 6.International Association of Water Resources in the Southern Mediterranean Basin (IAWRSMB), Sciences Faculty of Gafsa-TunisiaGafsaTunisia

Personalised recommendations