Carbonates and Evaporites

, Volume 32, Issue 2, pp 123–133 | Cite as

Very high magnesium calcite formation and microbial communities found in porosity of the Seroe Domi Formation of Curacao, Netherland Antilles

  • Jonathan B. SumrallEmail author
  • Erik B. Larson
  • John E. Mylroie
Original Article


Pores in the Seroe Domi Formation on Curacao contain large quantities of clay minerals, organic material, and protodolomite or very high-magnesium calcite (VHMC) crystals. Transmission electron microscopy (TEM) applied to bio-sectioned rock samples showed the in situ relationship between the organic material, clay minerals, and VHMC. Dumbbells, consisting of two globular bodies connected by a narrow waist, ~20 mm in length and 5–8 mm wide, characterize the organic masses. The dumbbells are coated by clay minerals. VHMC crystals grew from nucleation points within microbial films and sheaths that surround the dumbbells. DNA extraction for 16 s rRNA gene analysis revealed the presence of sulfate- and sulfur-reducing bacteria, a variety of marine cyanophytes, bacteridetes, and proteobacteria, plus freshwater cyanophytes within the rock samples. This study provides evidence from a new field locality for the microbial nucleation and growth of VHMC associated with clay minerals, and the in situ appearance of microbial dumbbells associated with dolomite. Additionally, this study is the first to reveal the internal structure of these dumbbell features indicating that they are organic in origin with crystalline material in the surrounding sheath.


VHMC Microbes Curacao Dumbbells 



The authors would like to thank David Budd and all of the anonymous reviewers that helped shape this manuscript with their insightful comments and suggestions. Special thanks to Brenda Kirkland for insight and guidance during the pilot portion of this project. The Carmabi Research Institute provided logistical assistance for field reconnaissance. Mr. R. Sledge Simmons provided funding for lodging. A Grant from the National Speleological Society provided funds for equipment use. Mississippi State University Department of Geosciences assisted with field and analytical expenses. Special thanks for laboratory assistance during TEM imaging/analysis to Amanda Lawrence and Rooban Venkatesh K. G. Thirumalai of I2AT at Mississippi State University. Sam Houston State University Department of Geography and Geology assisted with TEM analytical expenses.


  1. Aloisi G, Gloter A, Kruger M, Wallmann K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34:1017–1020. doi: 10.1130/G22986A.1 CrossRefGoogle Scholar
  2. Beets DJ (1972) Lithology and stratigraphy of the cretaceous and danian succession of Curacao (Ph.D. thesis): University of Amsterdam, The Netherlands, 153 pGoogle Scholar
  3. Berner RA (1968) Calcium carbonate concretions formed by the decomposition of organic matter. Science 159(3811):195–197CrossRefGoogle Scholar
  4. Bontognali TRR, Vasconcelos C, Warthmann RJ, Dupraz C, Bernasconi SM, McKenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 36:663–666. doi: 10.1130/G24755A.1 CrossRefGoogle Scholar
  5. Bontognali TR, McKenzie JA, Warthmann RJ, Vasconcelos C (2014) Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria. Terra Nova 26(1):72–77CrossRefGoogle Scholar
  6. Bosak T, Newman DK (2003) Microbial nucleation of calcium carbonate in the Precambrian. Geology 31:557–580. doi: 10.1130/0091-7613(2003)031<0577:MNOCCI>2.0.CO;2 CrossRefGoogle Scholar
  7. Bottrell SH, Smart PL, Whitaker F, Raiswell R (1991) Geochemistry and isotope systematics of sulphur in the mixing zone of Bahamian blue holes. Appl Geochem 6(1):97–103CrossRefGoogle Scholar
  8. Bottrell SH, Carew JL, Mylroie JE (1993) Bacterial sulphate reduction in flank margin environments: evidence from sulphur isotopes. In: Proceedings of the 6th symposium on the geology of the Bahamas, Port Charlotte, Florida, Bahamian Field Station, pp 17–21Google Scholar
  9. Bozzola JJ, Russell LD (1998) Electron Microscopy. Principles and techniques for biologists. Jones and Bartlett Publishers, SudburyGoogle Scholar
  10. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4):401–411CrossRefGoogle Scholar
  11. Buczynski C, Chafetz HS (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J Sediment Petrol 61:226–233CrossRefGoogle Scholar
  12. Casanova J, Bodenan F, Negrel P, Azaroual M (1999) Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the Cezallier hydrothermal springs (Massif Central, France). Sed Geol 126:125–145. doi: 10.1016/S0037-0738(99)00036-6 CrossRefGoogle Scholar
  13. Chafetz HS, Buczinski C (1992) Bacterially induced lithification of microbial mats. Palaios 7:277–293. doi: 10.2307/3514973 CrossRefGoogle Scholar
  14. De Buisonje PH (1974) Neogene and quaternary geology of Aruba, Curacao, and Bonaire (Ph.D. thesis): University of Utrecht, The Netherlands, p 293Google Scholar
  15. Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthra Island, Bahamas). Sed Geol 51:745–765Google Scholar
  16. Dupraz C, Reid PR, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162. doi: 10.1016/j.earscirev.2008.10.005 CrossRefGoogle Scholar
  17. Ehrlich HL, Newman DK (eds) (2008) Geomicrobiology, 5th edn. Boca Raton, FL, p 628Google Scholar
  18. Folk RL, Chafetz HS, Tiezzi PA (1985) Bizarre forms of depositional and diagenetic calcite in hot-spring travertines, central Italy. SEPM Special Publication 36, Carbonate Sediments, pp 349–369Google Scholar
  19. Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. In: Banfield JF, Nealson KH (eds), Geomicrobiology: interactions between microbes and minerals: reviews in mineralogy: Washington, D.C., Mineralogical Society of America, vol. 35, pp 161–180Google Scholar
  20. Fouke BW, Beets DJ, Meyers WJ, Hanson GN, Melillo AJ (1996) 87Sr/86Sr chronostratigraphy and dolomitization history of the Seroe Domi Formation, Curacao (Netherlands Antilles). Facies 35:293–320. doi: 10.1007/BF02536966 CrossRefGoogle Scholar
  21. Gaines AM (1977) Protodolomite redefined. J Sediment Res 47(2):543–546Google Scholar
  22. Gerasimenko LM, Mikhodyuk OS (2009) Halophilic algal-bacterial and cyanobacterial communities and their role in carbonate precipitation. Paleontol J 43(8):940–957CrossRefGoogle Scholar
  23. Graf DL, Goldsmith JR (1956) Some hydrothermal syntheses of dolomite and protodolomite. J Geol 64(2):173–186CrossRefGoogle Scholar
  24. Gregg JM, Bish DL, Kaczmarek SE, Machel HG (2015) Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology 62(6):1749–1769CrossRefGoogle Scholar
  25. Kaczmarek SE, Gregg JM, Bish DL, Machel HG, Fouke BW (2017) Dolomite, very high-magnesium calcite, and microbes—implications for the microbial model of dolomitization. SEPM Special Publication No. 109Google Scholar
  26. Kahle CF (1965) Possible roles of clay minerals in the formation of dolomite. J Sediment Res 35(2):448–453Google Scholar
  27. Krause S, Liebetrau V, Gorb S, Sánchez-Román M, McKenzie JA, Treude T (2012) Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology 40(7):587–590CrossRefGoogle Scholar
  28. Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. SEPM Special Publication No. 28, pp 87–110Google Scholar
  29. Leveille RJ, Fyfe WS, Longstaffe FJ (2000) Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chem Geol 169:339–355. doi: 10.1016/s0009-2541(00)00213-8 CrossRefGoogle Scholar
  30. Machel HG, Gregg JM, Bish DL, Kaczmarek S (2015) Microbial dolomite that isn’t dolomite. 15th Bathurst Meeting, 13–16th July, 2015, University of Edinburgh, U.K. Technical Program with Abstracts, p 80Google Scholar
  31. Rivadeneyra MA, Ramos-Cormenzana A, Delgado G, Delgado R (1996) Process of carbonate precipitation by Deleya halophile. Curr Microbiol 32:308–313. doi: 10.1007/s002849900055 CrossRefGoogle Scholar
  32. Roberts J, Bennett PC, González LA, Macpherson GL, Miliken KL (2004) Microbial precipitation of dolomite in methanogenic groundwater. Geology 32:277–280. doi: 10.1130/G20246.2 CrossRefGoogle Scholar
  33. Sánchez-Navas A, Martín-Algarra A, Nieto F (1998) Bacterially-mediated authigenesis of clays in phosphate stromatolites. Sedimentology 45:519–533. doi: 10.1046/j.1365-3091.1998.00157.x CrossRefGoogle Scholar
  34. Sánchez-Román M (2006) Calibration of microbial and geochemical signals related to dolomite formation by moderately halophilic aerobic bacteria: Significance and implication of dolomite in the geologic record (Ph.D. thesis): Switzerland, ETH Zurich (Swiss Federal Institute of Technology), p 134Google Scholar
  35. Sánchez-Román M, Rivadeneyra M, Vasconcelos C, Mckenzie JA (2007) Biomineralization of carbonate and phosphate by halophilic bacteria: influence of Ca2+ and Mg2+ ions. FEMS Microbiol Ecol 61:279–284Google Scholar
  36. Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie JA, Zenobi R, Rivadeneyra MA (2008) Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology 36:879–882. doi: 10.1130/G25013A.1 CrossRefGoogle Scholar
  37. Sánchez-Román M, Romanek CS, Fernández-Remolar DC, Sánchez-Navas A, McKenzie JA, Pibernat RA, Vasconcelos C (2011) Aerobic biomineralization of Mg-rich carbonates: implications for natural environments. Chem Geol 281(3):143–150CrossRefGoogle Scholar
  38. Sibley DF (1980) Climatic control of dolomitization, Seroe Domi Formation (Pliocene). Bonaire, NACrossRefGoogle Scholar
  39. Simkiss K, Wilbur KM (1989) Biomineralization: cell biology and mineral deposition. Academic Press, San DiegoGoogle Scholar
  40. Spadafora A, Perri E, McKenzie JA, Vasconcelos C (2010) Microbial biomineralization processes forming modern Ca: Mg carbonate stromatolites. Sedimentology 57(1):27–40CrossRefGoogle Scholar
  41. van Lith Y, Wartmann R, Vasconcelos C, McKenzie JA (2003a) Microbial fossilization in carbonates sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology 50:237–245. doi: 10.1046/j.1365-3091.2003.00550.x CrossRefGoogle Scholar
  42. van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003b) Sulfate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79. doi: 10.1046/j.1472-4669.2003.00003.x CrossRefGoogle Scholar
  43. Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lago Vermelha, Rio de Janeiro, Brazil). J Sediment Res 67:378–390Google Scholar
  44. Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222. doi: 10.1038/377220a0 CrossRefGoogle Scholar
  45. Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320. doi: 10.1130/G20992.1 CrossRefGoogle Scholar
  46. Visscher J, Stolz JF (2005) Microbial mats as bioreactors: populations, process, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100. doi: 10.1016/j.palaeo.2004.10.016 CrossRefGoogle Scholar
  47. Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094. doi: 10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2 CrossRefGoogle Scholar
  48. Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong region, South Australia: significance and implications. Sedimentology 52:987–1008. doi: 10.1111/j.1365-3091.2005.00732.x CrossRefGoogle Scholar
  49. Zhang F, Xu H, Konishi H, Roden EE (2010) A relationship between d104 value and composition in the calcite-disordered dolomite solid–solution series. Am Miner 95(11–12):1650–1656CrossRefGoogle Scholar
  50. Zhang F, Xu H, Konishi H, Shelobolina ES, Roden E (2012) Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite. Am Miner 97(4):556–567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jonathan B. Sumrall
    • 1
    Email author
  • Erik B. Larson
    • 2
  • John E. Mylroie
    • 3
  1. 1.Department of GeosciencesFort Hays State UniversityHaysUSA
  2. 2.Department of Natural SciencesShawnee State UniversityPortsmouthUSA
  3. 3.Department of GeosciencesMississippi State UniversityStarkvilleUSA

Personalised recommendations