Carbonates and Evaporites

, Volume 33, Issue 1, pp 65–77 | Cite as

Geochemical and isotopic investigation of the aquifer system under semi-arid climate: case of Essaouira basin (Southwestern Morocco)

  • Mohammed Bahir
  • Salah Ouhamdouch
  • Paulà M. Carreira
  • Najiba Chkir
  • Kamel Zouari
Original Article


Detailed hydrochemical and stable isotopic data of groundwater were used to understand the geochemical processes occurring in the Wadi Ouazzi basin in Southwestern Morocco. Hydrogeochemical investigations show that the evaporite dissolution (halite and gypsum), followed by cation-exchange reactions with reservoir matrix and by sea spray, constitute the main processes that control groundwater mineralization. Data inferred from 18-oxygen and deuterium isotopes in groundwater samples indicated recharge with modern rainfall. Water characterized by lower 18O and 2H values is interpreted as recharged by non-evaporated rainfall originating from Atlantic Ocean. Tritium contents, ranging between 0.18 and 3.43 TU, indicate that groundwater in both aquifers derive from post- and pre-nuclear recharge. The study of the carbon isotopes made it possible to estimate the water residence time of the two aquifers studied. Moreover, the calculated ages range from the modern to the late Pleistocene with the dominance of the modern age waters.


Arid climate Environmental isotopes Essaouira basin Groundwater resources Wadi Ouazzi 



The authors would like to express their thanks to IAEA––Isotope Hydrology Section. PM Carreira (C2TN/IST) gratefully acknowledges the FCT support through the UID/Multi/04349/2013 project.


  1. Araguás-Araguás L, Froechlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355CrossRefGoogle Scholar
  2. Bahir M, Jalal M, Mennani A, Fekri A (1999) Contribution à l’étude hydrogéologique et hydrochimique de la zone synclinale d’Essaouira (Contribution to the study of the hydrogeology and hydrochemistry of the Essaouira synclinal area). Congrès Intern. Sur l’eau et la désertification, CairoGoogle Scholar
  3. Bahir M, Mennani A, Jalal M, Youbi N (2000) Contribution à l’étude des ressources hydriques du bassin synclinal d’Essaouira (Maroc). Estudios Geol 56:185–195CrossRefGoogle Scholar
  4. Bahir M, Jala M, Mennani A (2001) Groundwater pollution by nitrates of the Essaouira synclinal basin. J Environ Hydrol 9:18–19Google Scholar
  5. Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southw st of Morocco. J Hydrol 52:267–287CrossRefGoogle Scholar
  6. Carreira PM, Marques JM, Graça RC, Aires-Barros L (2008) Radiocarbon application in dating ‘‘complex’’ hot and cold CO2-rich mineral water systems: a review of case studies ascribed to the northern Portugal. Appl Geochem 23:2817–2828CrossRefGoogle Scholar
  7. Carreira PM, Marques JM, Pina A, Mota Gomes A, Galego Fernandes PA, Monteiro Santos F (2010) Groundwater assessment at Santiago Island (Cabo Verde): a multidisciplinary approach to a recurring source of water supply. Water Resour Manag 04:1139–1159CrossRefGoogle Scholar
  8. Carvalho MR, Almeida C (1989) HIDSPEC: um-programa de especiação e cálculo de equilíbrios água/rocha [HIDSPEC, one speciation and calculation of balances water/rock program]. Rev Univ Aveiro 4(2):1–22Google Scholar
  9. Chamchati H (2014) Evaluation et protection des ressources en eau en zones semi-arides; exemple du bassin d’Essaouira. Thèse de doctorat, Université Cadi Ayyad, Maroc Google Scholar
  10. Chamchati H, Bahir M (2011) Contributions of climate change on water resources in semi-arid areas; example of the Essaouira Basin (Morocco). Am J Sci Ind Res 2:209–215Google Scholar
  11. Chamchati H, Bahir M, El Moukayar R (2012) Groundwater chemical evolution in the Essaouira aquifer basin––NW Morocco. Am J Sci Ind Res 2(1):200–218Google Scholar
  12. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  13. Dansgaard W (1964) Stable isotopes in precipitation. Tellus XVI 4: 436–468CrossRefGoogle Scholar
  14. Edmunds WM (2009) Geochemistry’s vital contribution to solving water resource problems. Appl Geochem 24:1058–1073CrossRefGoogle Scholar
  15. Edmunds WM, Droubi A (1998) Isotope techniques in the study of past and current environmental changes in the hydrosphere and atmosphere: groundwater salinity and environmental change. IAEA, Vienna, pp 503–518Google Scholar
  16. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  17. Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103CrossRefGoogle Scholar
  18. Fritz P, Fontes JC (eds) (1980) Handbook of Environmental Isotope Geochemistry. The Terrestrial Environment A, vol 1. Amsterdam, Elsevier, The Netherlands, pp 545Google Scholar
  19. Galego Fernandes P, Bahir M, Mendonça J, Carreira P, Fakir Y, Silva MO (2005) Anthropogenic features in Sines (Portugal) and Essaouira (Morocco) coastal aquifers: a comparative study of their hydrochemical evolution by a principal component analysis. Estudios Géol 61:207–219Google Scholar
  20. Galego Fernandes P, Carreira PM, Bahir M (2010) Mass balance simulation and principal components analysis applied to groundwater resources: Essaouira basin (Morocco). Environ Earth Sci 59:1475–1484CrossRefGoogle Scholar
  21. Garrels RM, Christ CM (1965) Solutions, minerals and equilibria. Harpers’ geoscience series. Harper and Row, New York, p 450Google Scholar
  22. Gonfiantini R, Zuppi GM (2003) Carbon isotopic exchange rate of DIC in karst groundwater. Chem Geol 197:319–336CrossRefGoogle Scholar
  23. Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complex Terminal aquifer in the Algerian Sahara. J Hydrol 11:483–495Google Scholar
  24. International Atomic Energy Agency (IAEA) (1976) Procedure and technique critique for tritium enrichment by electrolysis at IAEA laboratory. Vienna (Austria): Technical Procedure no. 19, IAEA, Isotope Hydrology SectionGoogle Scholar
  25. Kamel S, Hamed Y, Najiba C, Kamel Z (2008) The hydro geochemical characterization of ground waters in Tunisian Chott’s region. Environ Geol 54:843–854CrossRefGoogle Scholar
  26. LOZES A (1959) Rapport de synthèse sur les études sismiques dans la zone côtière d’Essaouira. Rapport inédit, Office National de la Recherche Pétrole, Reference 20048, 25Google Scholar
  27. Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Technol 105:541–549CrossRefGoogle Scholar
  28. Murray KS (1996) Hydrology and geochemistry of thermal waters in the Upper Napa valley, California. Ground Water 34:1115–1124CrossRefGoogle Scholar
  29. Re V, Faye SC, Faye A, Faye S, Gaye CB, Sacchi E, Zuppi GM (2011) Water quality decline in coastal aquifers under anthropic pressure: the case of asuburban area of Dakar (Senegal). Environ Monit Assess 172:605–622CrossRefGoogle Scholar
  30. Re V, Sacchi E, Martin-Bordes JL, Aureli A, El Hamouti N, Bouchnan R, Zuppi GM (2013) Processes affecting groundwater quality in arid zones: the case of the Bou-Areg coastal aquifer (North Morocco). Appl Geochem 34:181–198CrossRefGoogle Scholar
  31. Rozanski K (1985) Deuterium and 18O in European groundwaters––links to atmospheric circulation in the past. Chem Geol 52:349–363Google Scholar
  32. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Climate change in continental isotopic records. Am Geophys Union Geophys Monogr 78:1–36Google Scholar
  33. Societe Cherifienne De Pitrole (SCP) (1959) Note sur la structure dite de Mogador. Rapport inedit, Office National de la Recherche Petrol&e, Reference 1959; 31 104Google Scholar
  34. Stephen Fisher R, Mullican WF (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Dezert, Trans-Pecos, Texas, USA. Hydrogeol J 5(2):4–16CrossRefGoogle Scholar
  35. Warner N, Lgourna Z, Bouchaou L, Boutaleb S, Tagma T, Hsaissoune M, Vengosh A (2013) Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin, Morocco. Appl Geochem 34:140–151CrossRefGoogle Scholar
  36. Yangui H, Zouari K, Trabelsi R, Rozanski K (2010) Recharge mode and mineralization of groundwater in a semi-arid region: sidi Bouzid Plain (central Tunisia). J Environ Earth Sci 63:969–979CrossRefGoogle Scholar
  37. Yurtsever Y (1997) Role and contribution of environmental tracers for study of sources and processes of groundwater salinization. In: IAHS Publ. Hydrochem. Proceedings Rabat Symposium 244: 3–12Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohammed Bahir
    • 1
  • Salah Ouhamdouch
    • 1
  • Paulà M. Carreira
    • 2
  • Najiba Chkir
    • 3
  • Kamel Zouari
    • 3
  1. 1.Laboratoire de Géosciences et Environnement (LGE), Département de géologie, Ecole Normale SupérieureUniversité Cadi AyyadMarrakechMaroc
  2. 2.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.Ecole Nationale d’Ingénieurs de Sfax, Radio-Analyses et EnvironnementSfaxTunisie

Personalised recommendations