Carbonates and Evaporites

, Volume 32, Issue 4, pp 539–546 | Cite as

Evaluation of relative atmospheric correction methods on ASTER VNIR–SWIR data in playa environment

  • Iman AyoobiEmail author
  • Majid H. Tangestani
Original Article


Thermal emission and reflection radiometer (ASTER) L1B visible-near infrared and short wave-infrared (VNIR–SWIR) data were used to evaluate various relative calibration methods in playa environments. Internal average relative reflectance (IARR), log residual (LR), flat field (FF), and quick atmospheric correction (QUAC) methods were performed to convert at-sensor radiance data to apparent reflectance over several playas in Birjand, East of Iran. Results were evaluated comparing the calibrated image spectra of known locations and the laboratory spectra of field samples. The comparisons were done using spectral angle mapper (SAM) method and qualitative analysis of the spectral profiles. The SAM results and the qualitative analysis of the spectral profiles showed that spectra provided by applying FF method produced more similarities with laboratory spectra.


Playa ASTER IARR Flat field QUAC Log residual Birjand Iran 



Contributions by Dr. M. R. Sahebi (Geomatic engineering faculty at K.N. Toosi University), in spectral measurements of field samples is gratefully acknowledged.


  1. Agar B, Coulter D (2007) Remote sensing for mineral exploration—a decade perspective 1997–2007. In: “Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration” edited by B. Milkereit, p. 109–136Google Scholar
  2. Alavi M (1991) Tectonic map of the Middle East, scale 1:5,000,000. Geological Survey of Iran, TehranGoogle Scholar
  3. Ben-Dor E (2002) Quantitative remote sensing of soil properties. Adv Agron 75:173–243CrossRefGoogle Scholar
  4. Ben-Dor E, Kruse FA (1994) The relationship between the size of spatial subsets of GER 63 channel scanner data and the quality of the internal average relative reflectance (IARR) atmospheric correction technique. Int J Remote Sens 15(3):683–690. doi: 10.1080/01431169408954107 CrossRefGoogle Scholar
  5. Ben-Dor E, Kruse FA, Lefkoff AB, Banin A (1994) Comparison of three calibration techniques for utilization of GER 63-channel aircraft scanner data of Makhtesh Ramon, Negev, Israel. Photogramm Eng Remote Sens 60(11):1339–1354Google Scholar
  6. Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In: Gupta HK, Delany FM (eds) Zagros Hindu Kush Himalaya Geodynamic Evolution. American Geophysical Union, Washington DC, pp 5–32Google Scholar
  7. Bernstein LS, Adler-Golden SM, Sundberg RL et al (2005) Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR–SWIR multi- and hyperspectral imagery. SPIE Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. 5806:668–678CrossRefGoogle Scholar
  8. Bernstein LS, Adler-Golden SM, Sundberg RL, Ratkowski A (2006) Improved reflectance retrieval from hyper- and multispectral imagery without prior scene or sensor information. SPIE Proceedings, Remote Sensing of Clouds and the Atmosphere XI, vol. 6362Google Scholar
  9. ENVI User’s Guide (2009) ENVI on-line software user’s manual. ITT Visual Information Solutions, BoulderGoogle Scholar
  10. Fujisada H (1995) Design and performance of ASTER instrument. In: Fujisads H, Sweeting MN (eds.) Proceedings of SPIE (International Society for Optical Engineering), 25_28 September 1995, Paris, France, 2583, 16–25Google Scholar
  11. Goetz AF, Srivastava V (1985) Mineralogical mapping in the Cuprite mining district, Nevada. In: Proceedings of Airborne Imaging Spectrometer Data Analysis Workshop, pp 22–29Google Scholar
  12. Green AA, Craig MD (1985) Analysis of aircraft spectrometer data, with logarithmic residuals. In: Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop, JPL, pp 111–119Google Scholar
  13. Hartmann WK (1998) An ancient Martian lake bed? Astronomy (May) 24:28Google Scholar
  14. Hook SJ (1990) The combined use of multispectral remotely sensed data from the short wave infrared (SWIR) and thermal infrared (TIR) for lithological mapping and mineral exploration. In: Proceedings of the fifth Australasian remote sensing conference, Perth, Western Australia, vol. 1. pp 371–380Google Scholar
  15. Kalinowski AA, Oliver S (2004) ASTER mineral index processing manual. Remote Sensing Applications, Geoscience Australia, p 37Google Scholar
  16. Khan SD, Mahmood K (2008) The application of remote sensing techniques to the study of ophiolites. Earth Sci Rev 89(3):135–143CrossRefGoogle Scholar
  17. Kokaly RF (2001) Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens Environ 75:153–161CrossRefGoogle Scholar
  18. Kruse FA (1988) Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California. Remote Sens Environ 24:31–51CrossRefGoogle Scholar
  19. Kruse FA (2002) Combined SWIR and LWIR mineral mapping using MASTER/ASTER. In: Proceedings of IGARSS 2002, Toronto, Canada, 24–28 June 2002 (Published on CD ROM—Paper Int1_B15_04, ISBN: 0–7803–7537–8. Also in hardcopy, vol. IV, pp 2267–2269, IEEE Operations Center, Piscataway, NJ)Google Scholar
  20. Kruse FA, Lefkoff AB, Boardman JB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The Spectral Image Processing System (SIPS)—interactive visualization and analysis of Imaging spectrometer Data. Remote Sens Environ 44:145–163CrossRefGoogle Scholar
  21. Laznicka P (2006) Giant metallic deposits; future sources of industrial metals. Springer, New YorkGoogle Scholar
  22. Mazhari SA, Safari M (2013) High-K calc-alkaline plutonism in Zouzan, NE of Lut block, Eastern Iran: an evidence for arc related magmatism in Cenozoic. J Geol Soc India 81:698–708CrossRefGoogle Scholar
  23. Moghtaderi A, Moore F, Mohammadzadeh A (2007) The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran. J Asian Earth Sci 30(2):238–252CrossRefGoogle Scholar
  24. Moses WJ, Gitelson AA, Perk RL, Gurlin D, Rundquist DC, Leavitt BC, Brakhage P (2012) Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data. Water Res 46(4):993–1004CrossRefGoogle Scholar
  25. Nabavi MH (1976) An introduction to the geology of Iran. Geological Survey of Iran, Tehran, p 109 (in Persian)Google Scholar
  26. Pour AB, Hashim M (2014) Alteration mineral mapping using ETM+ and hyperion remote sensing data at Bau Gold Field, Sarawak, Malaysia. In: IOP Conference Series: Earth and Environmental Science (vol. 18, No. 1, p. 012149). IOP PublishingGoogle Scholar
  27. Ranjbar H, Masoumi F, Carranza EJM (2011) Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. Int J Remote Sens 32(12):3309–3327CrossRefGoogle Scholar
  28. Research Systems, Inc. (2002) ENVI tutorials. Research Systems, Inc., Boulder, p 640Google Scholar
  29. Richards JP, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Econ Geol 107:295–332CrossRefGoogle Scholar
  30. Roberts DA, Yamaguchi Y, Lyon R (1986) Comparison of various techniques for calibration of AIS data. In: Vane G, Goetz AFH (eds.) Proceedings of the 2nd Airborne Imaging Spectrometer Data Analysis Workshop JPL Publication, vol. 86–35. Jet Propulsion Lab, Pasadena, pp 21–30Google Scholar
  31. Rockwell BW, Hofstra AH (2008) Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1):218–246CrossRefGoogle Scholar
  32. Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84(3):350–366CrossRefGoogle Scholar
  33. RSI (2005) ENVI user’s guide—4.2. Research Systems Incorporated, BoulderGoogle Scholar
  34. Tangestani MH, Mazhari N, Agar B, Moore F (2008) Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi arid area, northern Shahre Babak, SE Iran. Int J Remote Sens 29(10):2833–2850CrossRefGoogle Scholar
  35. Tayebi MH, Tangestani MH, Vincent RK, Neal D (2014) Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran. J Volcanol Geoth Res 287:40–50CrossRefGoogle Scholar
  36. Van Der Meer F, de Jong SM (2001) Imaging spectrometry: basic principles and prospective applications, vol 1. Springer Science & Business Media, BerlinGoogle Scholar
  37. Wang J, He T, Lv C, Chen Y, Jian W (2010) Mapping soil organic matter based on land degradation spectral response units using Hyperion images. Int J Appl Earth Obs Geoinf 12:S171–S180CrossRefGoogle Scholar
  38. Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth Sci Rev 58(3):343–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Earth SciencesShiraz UniversityShirazIran

Personalised recommendations