Advertisement

Asymmetry of Cloud Vertical Structures and Associated Radiative Effects in Typhoon over the Northwest Pacific Based on CloudSat Tropical Cyclone Dataset

  • Yafei Yan
  • Jianguo TanEmail author
  • Linli Cui
  • Wei Yu
  • Yan Hu
Original Article
  • 9 Downloads

Abstract

The clouds’ macro-, microphysical vertical structures and radiative effects in 4 shear-relative quadrants of typhoon over the northwest Pacific during development, maturity and extinction stages are studied based on CloudSat Tropical Cyclone dataset and China Meteorological Administration tropical cyclone dataset from 2nd June 2006 to 31th December 2015. The typhoon cloud is in an asymmetric “mushroom” shape, with the downshear quadrants (in particular of the downshear left quadrant (DL)) have denser clouds than the upshear quadrants. Cloud ice water content mainly distributes near typhoon center with wide vertical range (6–17 km). A large number of ice particles with small sizes are gathering in high levels, while small amount of ice particles with large sizes are gathering in low levels. As typhoon matures, the number concentration and size of cloud ice particles in inner ring increases, especially in the DL quadrant; while in the upshear left (UL) quadrant, a larger amount of ice particles with bigger sizes are transport to high levels (above 16 km) by deeper convection near storm center. The shortwave (longwave) cloud radiative effects (CRE) is mainly heating (cooling) upper layer atmosphere between 10 km and 17 km (between 14 km and 17 km), and the net CRE on atmosphere is heating almost at any levels in typhoon. The strongest heating of shortwave CRE and net CRE, as well as the strongest cooling of longwave CRE are in the DL quadrant at development stage and in the UL quadrant at maturity stage in inner core of storms. The existences of typhoon clouds mainly decrease solar radiation penetrating to the earth surface and increase longwave radiation absorbed by the whole atmosphere in typhoon’s inner core, and they are generally stronger in downshear (especially in DL) quadrants, except the maturity stage when the UL quadrant performs the strongest shortwave CRE on the surface and longwave CRE on the atmosphere in typhoon’s inner core.

Keywords

CloudSat tropical cyclone dataset Typhoon Cloud vertical structures Cloud radiative effects (CRE) 

Notes

Funding Information

This work was jointly supported by the National Key R&D Program of China (Grant No. 2018YFA0606204), National Natural Science Foundation of China (Grant No. 41775019, 41571044), Natural Science Foundation of Shanghai (Grant No. 18ZR1434100) and Climate Change Special Fund of the China Meteorological Administration (Grant No. CCSF201922). The authors will also thanks for the support of Demonstration and Application Subsystem Construction Project of Typhoon Monitoring and Early Warning Service in Southeast Coast.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Austin, R.: Level 2B Radar-Only Cloud Water Content (2B-CWC-RO) Process Description Document. CloudSat Project Report,. Can be downloaded from http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cwc-ro?term=28 (2007). Accessed 23 April 2019
  2. Camp, J.P., Montgomery, M.T.: Hurricane maximum intensity: past and present. Mon. Weather Rev. 129, 1704–1717 (2001)CrossRefGoogle Scholar
  3. Chan, K.T.F., Chan, J.C.L., Wong, W.K.: Rainfall asymmetries of landfalling tropical cyclones along the South China coast. Meteorol. Appl. 26, 213–220 (2019).  https://doi.org/10.1002/met.1754 CrossRefGoogle Scholar
  4. Chen, S., Li, W., Lu, Y., Wen, Z.: Variations of latent heat flux during tropical cyclones over the South China Sea. Meteorol. Appl. 21, 717–723 (2013).  https://doi.org/10.1002/met.1398 CrossRefGoogle Scholar
  5. Chou, K.-H., Lin, S.-J., Ciang, M.-H.: The study of vertical wind shear induced convection asymmetry of tropical cyclone by CMORPH satellite data. Atmos. Sci. 44, 353–376 (2016)Google Scholar
  6. Chou, K.-H., Yeh, C.-M., Lin, S.-J.: The roles of vertical wind shear and topography in formation of convective asymmetries in Typhoon Nanmadol (2011). Terr. Atmos. Ocean. Sci. 30, 185–214 (2019).  https://doi.org/10.3319/TAO.2018.12.16.01 CrossRefGoogle Scholar
  7. Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), last accessed in 3rd Sep. 2019. https://cds.climate.copernicus.eu/cdsapp#!/home (2017). Accessed 28 July 2019
  8. DeHart, J.C., Houze, J.R.A., Rogers, R.F.: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci. 71, 2713–2732 (2014)CrossRefGoogle Scholar
  9. Durden, S.L., Tanelli, S., Dobrowalski, G.: CloudSat and A-Train observations of tropical cyclones. Open Atmos. Sci. J. 3(1), 80–92 (2009)CrossRefGoogle Scholar
  10. Elsberry, R.L.: Advances in research and forecasting of tropical cyclones from 1963–2013. Asia-Pacific J. Atmos. Sci. 50(1), 3–16 (2014).  https://doi.org/10.1007/s13143-014-0001-1 CrossRefGoogle Scholar
  11. Han, D., Yan, W., Ye, J., Liu, H.: Analyzing cloud, precipitation, and thermal structure characteristics of typhoons in eastern Pacific based on CloudSat satellite data. Chinese J. Atmos. Sci. 37(3), 691–704 (2013) (in Chinese)Google Scholar
  12. Hence, D.A., Houze, J.R.A.: Vertical structure of hurricane eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci. 68, 1637–1652 (2011).  https://doi.org/10.1175/2011JAS3578.1 CrossRefGoogle Scholar
  13. Henderson, D., Ecuyer, T. L., Vane, D., Stephens, G., Reinke, D.: Level 2B fluxes and heating rates and 2B fluxes and heating rates w/Lidar process description and interface control document (Version 1.0). CloudSat Project Report,. Can be downloaded from http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-flxhr-lidar?term=38 (2011). Accessed 23 April 2019
  14. Heymsfield, A.J., Protat, A., Austin, R.T., Bouniol, D., Hogan, R.J., Delanoe, J., Okamoto, H., Sato, K., Zadelhoff, J.G., Donovan, D.P., Wang, Z.: Testing IWC retrieval methods using radar and ancillary measurements with in situ data. J. Appl. Meteorol. Clim. 47, 135–163 (2008).  https://doi.org/10.1175/2007jamc1606.1 CrossRefGoogle Scholar
  15. Houze, R.A.: Clouds in tropical cyclones. Mon. Wea. Rev. 138(2), 293–344 (2010).  https://doi.org/10.1175/2009MWR2989.1 CrossRefGoogle Scholar
  16. Houze, R.A., Chen, S.S., Lee, W.C., Rogers, R.F., Moore, J.A., Stossmeister, G.J., Bell, M.M., Cetrone, J., Zhao, W., Brodzik, S.R.: The hurricane rainband and intensity change experiment: observations and modeling of hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteorol. Soc. 87(11), 1503–1522 (2006).  https://doi.org/10.1175/bams-87-11-1503 CrossRefGoogle Scholar
  17. Jiang, H., Liu, C., Zipser, E.J.: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteorol. Clim. 50, 1255–1274 (2011).  https://doi.org/10.1175/2010JAMC2662.1 CrossRefGoogle Scholar
  18. Jin, X., Wu, T., Li, L., Shi, C.: Cloudiness characteristics over Southeast Asia from satellite FY-2C and their comparison to three other cloud data sets. J. Geophys. Res. Atmos. 114, D17207 (2009).  https://doi.org/10.1029/2008JD011422 CrossRefGoogle Scholar
  19. Jin, Y., Wang, S., Nachamkin, J., Doyle, J.D., Thompson, G., Grasso, L., Holt, T., Moskaitis, J., Jin, H., Hodur, R.M., Zhao, Q., Liu, M., DeMaria, M.: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev. 142(2), 606–625 (2014).  https://doi.org/10.1175/MWR-D-13-00058.1 CrossRefGoogle Scholar
  20. Jing, Y., Li, J., Weng, Y., Wang, J.: The assessment of drought relief by typhoon Saomai based on MODIS remote sensing data in Shanghai, China. Nat. Hazards. 71(2), 1215–1225 (2014).  https://doi.org/10.1007/s11069-013-0667-1 CrossRefGoogle Scholar
  21. Luo, Z., Stephens, G.L., Emanuel, K.A., Vane, D.G., Tourville, N.D., Haynes, J.M.: On the use of CloudSat and MODIS data for estimating hurricane intensity. IEEE Geosci. Remot. S. 5(1), 13–16 (2008).  https://doi.org/10.1109/LGRS.2007.905341 CrossRefGoogle Scholar
  22. Matrosov, S.Y.: Potential for attenuation-based estimations of rainfall rate from CloudSat. Geophys. Res. Lett. 34, L05817 (2007).  https://doi.org/10.1029/2006GL029161 CrossRefGoogle Scholar
  23. Matrosov, S.Y.: CloudSat measurements of landfalling hurricanes Gustav and Ike (2008). J. Geophys. Res. 116, D01203 (2011).  https://doi.org/10.1029/2010JD014506 CrossRefGoogle Scholar
  24. Mitrescu, C., Miller, S., Hawkins, J., L’Ecuyer, T., Turk, J., Partain, P., Stephens, G.: Near-real-time applications of CloudSat data. J. Appl. Meteorol. Clim. 47, 1982–1994 (2008).  https://doi.org/10.1175/2007JAMC1794.1 CrossRefGoogle Scholar
  25. Ramanathan, V., Cess, R.D., Harrison, E.F., Minnis, P., Barkstrom, B.R., Ahmad, E., Hartmann, D.: Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science. 243, 57–63 (1989).  https://doi.org/10.1126/science.243.4887.57 CrossRefGoogle Scholar
  26. Rogers, R.F., Reasor, P., Lorsolo, S.: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev. 141, 2970–2991 (2013)CrossRefGoogle Scholar
  27. Sanger, N.T., Montgomery, M.T., Smith, R.K., Bell, M.M.: An observational study of tropical cyclone spinup in super typhoon Jangmi (2008) from 24 to 27 September. Mon. Weather Rev. 142(1), 3–28 (2015)CrossRefGoogle Scholar
  28. Stephens, G.L., Vane, D.G., Boain, R.J., Mace, G.G., Sassen, K., Wang, Z., Illingworth, A., Connor, E.O., Rossow, W., Durden, S.L., Miller, S., Austin, R., Benedetti, A., Mitrescu, C., the CloudSat Science Team: The Cloudsat mission and the A-Train: a new dimension to space-based observations of clouds and precipitation. Bull. Amer. Meteorol. Soc. 83, 1771–1790 (2002).  https://doi.org/10.1175/bams-83-12-1771 CrossRefGoogle Scholar
  29. Subrahmanyam, K.V., Kumar, K.K., Tourville, N.D.: CloudSat observations of three-dimensional distribution of cloud types in tropical cyclones. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(2), 339–344 (2018)CrossRefGoogle Scholar
  30. Tourville, N., Stephens, G., Demaria, M., Vane, D.: Remote sensing of tropical cyclones: observations from CloudSat and A-train profilers. Bull. Amer. Meteorol. Soc. 96(4), 609–622 (2015).  https://doi.org/10.1175/bams-d-13-00282.1 CrossRefGoogle Scholar
  31. Wang, B., Xu, H., Zhai, G., Li, X.: The rainfall responses of typhoon Soudelor (2015) to Radiative processes of cloud species. J. Geophy. Res. Atmos. 123(8), 4284–4293 (2018)CrossRefGoogle Scholar
  32. Winker, D.M., Hunt, W.H., McGill, M.J.: Initial performance assessment of CALIOP. Geophys. Res. Lett. 34, L19803 (2007).  https://doi.org/10.1029/2007GL030135 CrossRefGoogle Scholar
  33. Yan, Y., Liu, Y.: Vertical structures of convective and stratiform clouds in boreal summer over the Tibetan plateau and its neighboring regions. Adv. Atmos. Sci. 36(10), 1089–1102 (2019).  https://doi.org/10.1007/s00376-019-8229-4 CrossRefGoogle Scholar
  34. Yan, W., Han, D., Zhou, X.K., Liu, H., Tang, C.: Analysing the structure characteristics of tropical cyclones based on CloudSat satellite data. Chinese J. Geophy. 56(6), 1809–1824 (2013) (in Chinese)CrossRefGoogle Scholar
  35. Yan, Y., Liu, Y., Lu, J.: Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan plateau and its neighboring regions. J. Geophys. Res. Atmos. 121, 5864–5877 (2016).  https://doi.org/10.1002/2015JD024591 CrossRefGoogle Scholar
  36. Yan, Y., Wang, X., Liu, Y.: Cloud vertical structures associated with precipitation magnitudes over the Tibetan plateau and its neighboring regions. Atmos. Oceanic Sci. Lett. 11, 44–53 (2018).  https://doi.org/10.1080/16742834.2018.1395680 CrossRefGoogle Scholar
  37. Yao, Z., Lin, L., Chen, H., Fei, J.: A scheme for estimating tropical cyclone intensity using AMSU-A data. Adv. Atmos. Sci. 25(1), 96–106 (2008).  https://doi.org/10.1007/s00376-008-0096-3 CrossRefGoogle Scholar
  38. Yin, J.F., Wang, D.H., Liang, Z.M., Liu, C.J., Zhai, G.Q., Wang, H.: Numerical study of the role of microphysical latent heating and surface heat fluxes in a severe precipitation event in the warm sector over southern China. Asia-Pac. J. Atmos. Sci. 54(1), 77–90 (2018).  https://doi.org/10.1007/s13143-017-0061-0 CrossRefGoogle Scholar
  39. Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y., Chen, D.: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 31, 287–301 (2014).  https://doi.org/10.1175/JTECH-D-12-00119.1 CrossRefGoogle Scholar
  40. Yokoyama, C., Takayabu, Y.N.: A statistical study on rain characteristics of tropical cyclones using TRMM satellite data. Mon. Wea. Rev. 136(10), 3848–3862 (2008)CrossRefGoogle Scholar
  41. Zagrodnik, J.P., Jiang, H.: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci. 71(8), 2789–2809 (2014)CrossRefGoogle Scholar
  42. Zhang, M., Qiu, H., Fang, X., Lu, N.: Study on the multivariate statistical estimation of tropical cyclone intensity using FY-3 MWRI brightness temperature data. J. Trop. Meteorol. 23(2), 146–154 (2017).  https://doi.org/10.16555/j.1006-8775.2017.02.003 CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  • Yafei Yan
    • 1
    • 2
    • 3
  • Jianguo Tan
    • 4
    • 5
    Email author
  • Linli Cui
    • 2
  • Wei Yu
    • 2
    • 6
  • Yan Hu
    • 2
  1. 1.School of Environmental and Geographical Sciences (SEGS)Shanghai Normal UniversityShanghaiChina
  2. 2.Shanghai Ecological Forecasting and Remote Sensing CenterShanghaiChina
  3. 3.Shanghai Typhoon InstituteChina Meteorological AdministrationShanghaiChina
  4. 4.Key Laboratory of Cities Mitigation and Adaptation to Climate Change in Shanghai (CMACC)ShanghaiChina
  5. 5.Shanghai Climate CenterShanghaiChina
  6. 6.Department of Atmospheric and Oceanic SciencesFudan UniversityShanghaiChina

Personalised recommendations