Advertisement

Development of Sea Surface Temperature Retrieval Algorithms for Geostationary Satellite Data (Himawari-8/AHI)

  • Kyung-Ae ParkEmail author
  • Hye-Jin Woo
  • Sung-Rae Chung
  • Seong-Hoon Cheong
Original Article
  • 46 Downloads

Abstract

This study provides an overview of the development of sea surface temperature retrieval algorithms by using Himawari-8/AHI data as a proxy data of GK-2A with quite similar spectral bands except for 2.26-μm and 1.38-μm bands. For contingency preparation, several potential algorithms, such as Multi-channel SST (MCSST), Non-linear SST (NLSST), Hybrid SST, and Multi-band SST, were developed over the full disk region. The accuracy of each algorithm was assessed by determining the root mean square error (RMSE) and bias errors from the regression procedure of the matchup database between satellite data and quality controlled drifter temperature in-situ data for a year, from August 2016 to July 2017. Comparison of the four algorithms revealed that the Multi-band algorithm performed markedly well, with the smallest RMSE of ~0.4 °C. Time-varying validation of the estimated SST accuracy highlighted consistently low RMSE as well as the stability of the Multi-band algorithm. In addition, it is suggested that SSTs with a satellite zenith angle exceeding 60° tended to have relatively large errors which degraded the quality of the estimated SSTs. It is concluded that the SST coefficients should be updated each day, based on the previous one-month matchup database, contributing to the expected SST accuracy in the future with the degradation of the sensor or other aging effects. Further, this work discusses the importance of cloudy or cloud-contaminated pixels for the better performance of SST retrieval procedures and their real-time operational use.

Keywords

Sea surface temperature MCSST  NLSST Hybrid SST  Multi-band SST  Himawari-8/AHI  SST coefficients 

Notes

Acknowledgements

This work was supported by “Development of Scene Analysis & Surface Algorithms” project, funded by ETRI, which is a subproject of “Development of Geostationary Meteorological Satellite Ground Segment (NMSC-2019-01)” program funded by NMSC (National Meteorological Satellite Center) of KMA (Korea Meteorological Administration). This work was partly funded by the Korea Meteorological Administration Research and Development Program under Grant KMI2018-05110.

References

  1. Anding, D., Kauth, R.: Estimation of sea surface temperature from space. Remote Sens. Environ. 1(4), 217–220 (1970)CrossRefGoogle Scholar
  2. Barton, I.J.: Transmission model and ground-truth investigation of satellite-derived sea surface temperatures. J. Appl. Meteorol. 24(6), 508–516 (1985)CrossRefGoogle Scholar
  3. Bernstein, R.L.: Sea surface temperature estimation using the NOAA 6 satellite advanced very high resolution radiometer. J. Geophys. Res. 87(C12), 9455–9465 (1982)CrossRefGoogle Scholar
  4. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., Yoshida, R.: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorolog. Soc. Jpn. Ser. II. 94(2), 151–183 (2016)CrossRefGoogle Scholar
  5. Casey, K.S., Cornillon, P.: A comparison of satellite and in situ–based sea surface temperature climatologies. J. Clim. 12(6), 1848–1863 (1999)CrossRefGoogle Scholar
  6. Casey, K.S., Brandon, T.B., Cornillon, P., Evans, R.: The past, present, and future of the AVHRR pathfinder SST program. In: Barale, V., Gower, J.F.R., Alberotanza, L. (eds.) Oceanography from Space, pp. 273–287. Springer, Dordrecht (2010)CrossRefGoogle Scholar
  7. Cayula, J.F.P., May, D.A., McKenzie, B.D., Willis, K.D.: VIIRS-derived SST at the naval oceanographic office: from evaluation to operation. In: Sensing, O., Monitoring, V. (eds.) SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, Baltimore (2013)Google Scholar
  8. Chelton, D.B.: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Clim. 18(4), 530–550 (2005)CrossRefGoogle Scholar
  9. Chin, T.M., Vázquez-Cuervo, J., Armstrong, E.M.: A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 200, 154–169 (2017)CrossRefGoogle Scholar
  10. Donlon, C., Robinson, I., Casey, K.S., Vázquez-Cuervo, J., Armstrong, E., Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I., Beggs, H., Poulter, D.J.S., Merchant, C.J., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D., Mutlow, C., Reynolds, R.W., Kawamura, H., Rayner, N.: The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 88(8), 1197–1214 (2007)Google Scholar
  11. Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., Wimmer, W.: The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012)CrossRefGoogle Scholar
  12. Hocking, J., Rayer, P. J. , Rundle, D., Saunders, R. W. , Matricardi, M. , Geer, A. , Brunel, P., Vidot, J.: RTTOV v11 Users Guide. NWP SAF (2014)Google Scholar
  13. Ignatov, A., Petrenko, B., Shabanov, N., Kihai, Y., Dash, P., Liang, X.: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Sea Surface Temperature. NOAA NESDIS Center for Satellite Applications and Research (2010)Google Scholar
  14. Kilpatrick, K.A., Podesta, G.P., Evans, R.: Overview of the NOAA/NASA advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. 106(C5), 9179–9197 (2001)CrossRefGoogle Scholar
  15. Kim, H. Y., Park, K. A.: Comparison of sea surface temperature from oceanic buoys and satellite microwave measurements in the western coastal region of Korean Peninsula. J. Korean Earth Sci. Soc. 396(6), 555-567 (2018) (in Korean with English abstract)CrossRefGoogle Scholar
  16. Kramar, M., Ignatov, A., Petrenko, B., Kihai, Y., & Dash, P.: Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system. In: SPIE defense + security (eds.) ocean Sensing and Monitoring VIII. International Society for Optics and Photonics, Baltimore (2016)Google Scholar
  17. Lumpkin, R., Pazos, M.: Measuring surface currents with surface velocity program drifters: the instrument, its data, and some recent results. In: Griffa, A., Kirwan, A.D., Mariano, A., Özgökmen, T., Rossby, H.T. (eds.) Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Pp. 39–67. Cambridge University Press, Cambridge (2007)Google Scholar
  18. Martin, M.J., Hines, A., Bell, M.J.: Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact. Q. J. R. Meteorol. Soc. 133, 981–995 (2007)CrossRefGoogle Scholar
  19. McBride, W., Arnone, R., Cayula, J.F.: Improvements of Satellite SST Retrievals at Full Swath, in: SPIE Defense, Security, and Sensing (Eds.) Ocean Sensing and Monitoring V. International Society for Optics and Photonics, Baltimore (2013)CrossRefGoogle Scholar
  20. McClain, E.P., Pichel, W.G., Walton, C.C.: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. 90(C6), 11587–11601 (1985)CrossRefGoogle Scholar
  21. Murata, H., Takahashi, M., Kosaka, Y.: VIS and IR bands of Himawari-8/AHI compatible with those of MTSAT-2/imager. MSC technical note. 60, 1–18 (2015)Google Scholar
  22. OSI SAF: Geostationary Sea Surface Temperature Product User Manual. EUMETSAT, Berlin (2011)Google Scholar
  23. Park, K.A., Lee, E.Y., Li, X., Chung, S.R., Sohn, E.H., Hong, S.: NOAA/AVHRR Sea surface temperature accuracy in the east/Japan Sea. Int. J. Digital Earth. 8(10), 784–804 (2015)CrossRefGoogle Scholar
  24. Petrenko, B., Ignatov, A., Kihai, Y., Heidinger, A.: Clear-sky mask for the advanced clear-sky processor for oceans. J. Atmos. Ocean. Technol. 27(10), 1609–1623 (2010)CrossRefGoogle Scholar
  25. Petrenko, B., Ignatov, A., Shabanov, N., Kihai, Y.: Development and evaluation of SST algorithms for GOES-R ABI using MSG SEVIRI as a proxy. Remote Sens. Environ. 115(12), 3647–3658 (2011)CrossRefGoogle Scholar
  26. Prabhakara, C., Dalu, G., Kunde, V.G.: Estimation of sea surface temperature from remote sensing in the 11-to 13-μm window region. J. Geophys. Res. 79(33), 5039–5044 (1974)CrossRefGoogle Scholar
  27. Reynolds, R.W., Smith, T.M.: A high-resolution global sea surface temperature climatology. J. Clim. 8(6), 1571–1583 (1995)CrossRefGoogle Scholar
  28. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W.: An improved in situ and satellite SST analysis for climate. J. Clim. 15(13), 1609–1625 (2002)CrossRefGoogle Scholar
  29. Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 11(7), 2717–2737 (1982)CrossRefGoogle Scholar
  30. Vázquez-Cuervo, J., Armstrong, E.M., Casey, K.S., Evans, R., Kilpatrick, K.: Comparison between the pathfinder versions 5.0 and 4.1 sea surface temperature datasets: a case study for high resolution. J. Clim. 23(5), 1047–1059 (2010)CrossRefGoogle Scholar
  31. Walton, C.C., Pichel, W.G., Sapper, J.F., May, D.A.: The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. 103(C12), 27999–28012 (1998)CrossRefGoogle Scholar
  32. Woo, H.J., Park, K., Li, X., Lee, E.Y.: Sea surface temperature retrieval from the first Korean geostationary satellite COMS data: validation and error assessment. Remote Sens. 10(12), 1916 (2018)CrossRefGoogle Scholar
  33. World Meteorological Organization: Manual on the Global Telecommunication System. World Meteorological Organization (2008)Google Scholar
  34. Xu, F., Ignatov, A.: In situ SST quality monitor (iQUAM). J. Atmos. Ocean. Technol. 31(1), 164–180 (2014)CrossRefGoogle Scholar
  35. Závody, A.M., Mutlow, C.T., Llewellyn-Jones, D.T.: Cloud clearing over the ocean in the processing of data from the along-track scanning radiometer (ATSR). J. Atmos. Ocean. Technol. 17, 595–615 (2000)CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Earth Science Education / Research Institute of OceanographySeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Science EducationSeoul National UniversitySeoulRepublic of Korea
  3. 3.National Meteorological Satellite Center / Korea Meteorological AdministrationJincheonRepublic of Korea

Personalised recommendations