Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Assessing Bias Correction Methods in Support of Operational Weather Forecast in Arid Environment

  • 64 Accesses

Abstract

In this study, the Weather Research and Forecasting (WRF) model is employed for operational forecasting over the United Arab Emirates (UAE). The goal of this study is to assess two bias correction methods, namely the multiplicative Ratio Correction (RC) and Kalman Filter (KF), in support of operational mesoscale forecasts in the UAE. These techniques are applied to the 2-m temperature with the corrected temperature subsequently used to update the Relative Humidity (RH) predictions. The simulation covers the 2-year period 1st January 2017 to 31st December 2018. To evaluate the WRF performance, Meteorological Aerodrome Reports (METARs) observations at five airport stations are used. It is concluded that when any of the bias correction techniques are applied, there is a significant reduction of the bias and Root-Mean-Square-Error (RMSE). This is particularly true in the summer season and during nighttime and early morning hours, when WRF has a systematic cold bias of up to 2 °C. In addition, the bias distribution is more symmetric with a reduced spread, skewness and kurtosis values. The RC technique is found to give the best scores, with the observed and modelled temperatures generally within 0.25 °C for the first two forecast days. In addition, it successfully removes the model tendency of underperforming in the warm season. A similar improvement in the skill scores is seen in the RH forecasts albeit with smaller magnitudes. The KF and RC techniques used here have been employed successfully in operational forecasts with the potential to expand them to other model variables.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aldababseh, A., Temimi, M.: Analysis of the long-term variability of poor visibility events in the UAE and the link with climate dynamics. Atmosphere. 8(12), 242 (2017). https://doi.org/10.3390/atmos8120242

  2. Annan, J.D., Lunt, D.J., Hargreaves, J.C., Valdes, P.J.: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Process. Geophys. 12(3), 363–371 (2005). https://doi.org/10.5194/npg-12-363-2005

  3. Banks, R.F., Tiana-Alsina, J., Baldasano, J.M., Rocadenbosch, F., Papayannis, A., Solomos, S., Tzanis, C.G.: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res. 176-177, 185–201 (2016). https://doi.org/10.1016/j.atmosres.2016.02.024

  4. Bartok, J., Bott, A., Gera, M.: Fog prediction for road traffic safety in a Coastal Desert region. Bound.-Layer Meteorol. 145(3), 485–506 (2012). https://doi.org/10.1007/s10546-012-9750-5

  5. Borrego, C., Monteiro, A., Pay, M.T., Ribeiro, I., Miranda, A.I., Basart, S., Baldasano, J.M.: How bias-correction can improve air quality forecasts over Portugal. Atmos. Environ. 45(37), 6629–6641 (2011). https://doi.org/10.1016/j.atmosenv.2011.09.006

  6. Cassano, J.J., Higgins, M.E., Seefeldt, M.W.: Performance of the weather research and forecasting model for month-long pan-Arctic simulations. Mon. Weather Rev. 139(11), 3469–3488 (2011). https://doi.org/10.1175/mwr-d-10-05065.1

  7. Cassola, F., Burlando, M.: Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl. Energy. 99, 154–166 (2012). https://doi.org/10.1016/j.apenergy.2012.03.054

  8. Chaouch, N., Temimi, M., Weston, M., Ghedira, H.: Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region. Atmos. Res. 187, 106–127 (2017). https://doi.org/10.1016/j.atmosres.2016.12.009

  9. Chui, C.K., Chen, G.: Kalman Filter: An Elementary Approach. In: Kalman Filtering. pp. 19–31. Springer International Publishing, (2017)

  10. Docimo, D.J., Ghanaatpishe, M., Mamun, A.: Extended Kalman filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module. Energy. 120, 47–57 (2017). https://doi.org/10.1016/j.energy.2016.12.089

  11. Eide, S.S., Bremnes, J.B., Steinsland, I.: Bayesian model averaging for wind speed ensemble forecasts using wind speed and direction. Weather Forecast. 32(6), 2217–2227 (2017). https://doi.org/10.1175/waf-d-17-0091.1

  12. Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J.: Artificial neural networks forecasting of PM 2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 107, 118–128 (2015). https://doi.org/10.1016/j.atmosenv.2015.02.030

  13. Ghebreyesus, D., Temimi, M., Fares, A., Bayabil, H.: A multi-satellite approach for water storage monitoring in an arid watershed. Geosciences. 6(3), 33 (2016a). https://doi.org/10.3390/geosciences6030033

  14. Ghebreyesus, D.T., Temimi, M., Fares, A., Bayabil, H.K.: Remote Sensing Applications for Monitoring Water Resources in the UAE Using Lake Zakher as a Water Storage Gauge. In: Emerging Issues in Groundwater Resources. pp. 145–157. Springer International Publishing, (2016b)

  15. Glahn, H.R., Lowry, D.A.: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. 11(8), 1203–1211 (1972). https://doi.org/10.1175/1520-0450(1972)011<1203:tuomos>2.0.co;2

  16. Homleid, M.: Diurnal corrections of short-term surface temperature forecasts using the Kalman filter. Weather Forecast. 10(4), 689–707 (1995). https://doi.org/10.1175/1520-0434(1995)010<0689:dcosts>2.0.co;2

  17. Homleid, M.: Weather dependent statistical adaption of 2-meter temperature forecasts using regression methods and Kalman filter. Norwegian Meteorological Institute Met. report no. 6/2004 – Meteorology. (2004)

  18. Houtekamer, P.L., Zhang, F.: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 144(12), 4489–4532 (2016). https://doi.org/10.1175/mwr-d-15-0440.1

  19. Jung, T., Tompkins, A.M., Rodwell, M.J.: Some aspects of systematic error in the ECMWF model. Atmos. Sci. Lett. 6(2), 133–139 (2005). https://doi.org/10.1002/asl.105

  20. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35 (1960). https://doi.org/10.1115/1.3662552

  21. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. Basic Eng. 83(1), 95 (1961). https://doi.org/10.1115/1.3658902

  22. Kalnay, E.: Atmospheric predictability and ensemble forecasting. In: Atmospheric modeling, data assimilation and predictability. pp. 205–260. Cambridge University Press, (2003)

  23. Karagulian, F., Temimi, M., Ghebreyesus, D., Weston, M., Kondapalli, N.K., Valappil, V.K., Aldababesh, A., Lyapustin, A., Chaouch, N., Al Hammadi, F., Al Abdooli, A.: Analysis of a severe dust storm and its impact on air quality conditions using WRF-Chem modeling, satellite imagery, and ground observations. Air Qual. Atmos. Health. 12, 453–470 (2019). https://doi.org/10.1007/s11869-019-00674-z

  24. Klein, W.H., Lewis, F.: Computer forecasts of maximum and minimum temperatures. J. Appl. Meteorol. 9(3), 350–359 (1970). https://doi.org/10.1175/1520-0450(1970)009<0350:cfomam>2.0.co;2

  25. Klein, W.H., Lewis, B.M., Enger, I.: Objective prediction of five-day mean temperatures during winter. J. Meteorol. 16(6), 672–682 (1959). https://doi.org/10.1175/1520-0469(1959)016<0672:opofdm>2.0.co;2

  26. Li, W., Sun, S., Jia, Y., Du, J.: Robust unscented Kalman filter with adaptation of process and measurement noise covariances. Digital Signal Process. 48, 93–103 (2016). https://doi.org/10.1016/j.dsp.2015.09.004

  27. Libonati, R., Trigo, I., DaCamara, C.C.: Correction of 2 m-temperature forecasts using Kalman filtering technique. Atmos. Res. 87, 183–197 (2008). https://doi.org/10.1016/j.atmosres.2007.08.006

  28. Marzban, C.: Neural networks for Postprocessing model output: ARPS. Mon. Weather Rev. 131(6), 1103–1111 (2003). https://doi.org/10.1175/1520-0493(2003)131<1103:nnfpmo>2.0.co;2

  29. Mason, K., Duggan, J., Howley, E.: Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks. Energy. 155, 705–720 (2018). https://doi.org/10.1016/j.energy.2018.04.192

  30. McIntosh, D.H.: Atmospheric science: An introductory survey. By J. M. Wallace and P. V. Hobbs. Academic Press (New York), 1977. Pp. xvii, 467, 229 figs., 15 tables. £12.80. Q.J.R. Meteorol. Soc. 104, 534–534 (1978). https://doi.org/10.1002/qj.49710444024.

  31. McKeen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie, E.Y., Gong, W., Bouchet, V., Menard, S., Moffet, R., McHenry, J., McQueen, J., Tang, Y., Carmichael, G.R., Pagowski, M., Chan, A., Dye, T., Frost, G., Lee, P., Mathur, R.: Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. J. Geophys. Res. 110(D21) (2005). https://doi.org/10.1029/2005jd005858

  32. Meng, A., Ge, J., Yin, H., Chen, S.: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers. Manag. 114, 75–88 (2016). https://doi.org/10.1016/j.enconman.2016.02.013

  33. Michalakes, J., Chen, S., Dudhia, J., Hart, L., Klemp, J., Middlecoff, J., Skamarock, W.: Development of a Next-Generation Regional Weather Research and Forecast Model. Paper presented at the Developments in Teracomputing, (2001/11)

  34. Mishra, A.K., Desai, V.R.: Drought forecasting using stochastic models. Stoch. Env. Res. Risk A. 19(5), 326–339 (2005). https://doi.org/10.1007/s00477-005-0238-4

  35. Mohammadi, S.A., Azadi, M., Rahmani, M.: Comparison of spatial interpolation methods for gridded bias removal in surface temperature forecasts. J. Meteorol. Res. 31(4), 791–799 (2017). https://doi.org/10.1007/s13351-017-6135-1

  36. Monteiro, A., Ribeiro, I., Tchepel, O., Sá, E., Ferreira, J., Carvalho, A., Martins, V., Strunk, A., Galmarini, S., Elbern, H., Schaap, M., Builtjes, P., Miranda, A.I., Borrego, C.: Bias correction techniques to improve air quality ensemble predictions: focus on O3 and PM over Portugal. Environ. Model. Assess. 18(5), 533–546 (2013). https://doi.org/10.1007/s10666-013-9358-2

  37. Nagy, G.I., Barta, G., Kazi, S., Borbély, G., Simon, G.: GEFCom2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach. Int. J. Forecast. 32(3), 1087–1093 (2016). https://doi.org/10.1016/j.ijforecast.2015.11.013

  38. Ouarda, T.B.M.J., Charron, C., Niranjan Kumar, K., Marpu, P.R., Ghedira, H., Molini, A., Khayal, I.: Evolution of the rainfall regime in the United Arab Emirates. J. Hydrol. 514, 258–270 (2014). https://doi.org/10.1016/j.jhydrol.2014.04.032

  39. Papacharalampous, G., Tyralis, H., Koutsoyiannis, D.: Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Stoch. Env. Res. Risk A. 33, 481–514 (2019). https://doi.org/10.1007/s00477-018-1638-6

  40. Persson, A.: Kalman filtering - a new approach to adaptive statistical interpretation of numerical meteorological forecasts. . Lectures and papers presented at the WMO Training Workshop on the Interpretation of NWP Products in Terms of Local Weather Phenomena and Their Verification, WMO TD 421, 29th July - 9th August, Wageningen, the Netherlands. (1991)

  41. Pierro, M., Bucci, F., Cornaro, C., Maggioni, E., Perotto, A., Pravettoni, M., Spada, F.: Model output statistics cascade to improve day ahead solar irradiance forecast. Sol. Energy. 117, 99–113 (2015). https://doi.org/10.1016/j.solener.2015.04.033

  42. Powers, J.G.: Numerical prediction of an Antarctic severe wind event with the weather research and forecasting (WRF) model. Mon. Weather Rev. 135(9), 3134–3157 (2007). https://doi.org/10.1175/mwr3459.1

  43. Qu, B., Zhang, X., Pappenberger, F., Zhang, T., Fang, Y.: Multi-model grand ensemble hydrologic forecasting in the Fu River basin using Bayesian model averaging. Water. 9(2), 74 (2017). https://doi.org/10.3390/w9020074

  44. Quan, J., Di, Z., Duan, Q., Gong, W., Wang, C., Gan, Y., Ye, A., Miao, C.: An evaluation of parametric sensitivities of different meteorological variables simulated by the WRF model. Q. J. R. Meteorol. Soc. 142(700), 2925–2934 (2016). https://doi.org/10.1002/qj.2885

  45. Sameni, R., Shamsollahi, M.B., Jutten, C., Babaie-Zade, M.: Filtering Noisy ECG Signals Using the Extended Kalman Filter Based on a Modified Dynamic ECG Model. Paper presented at the Computers in Cardiology, (2005)

  46. Simonsen, C.: Self adaptive model output statistics based on Kalman filtering. Lectures and papers presented at the WMO Training Workshop on the Interpretation of NWP Products in Terms of Local Weather Phenomena and Their Verification, WMO TD 421, 29th July - 9th August, Wageningen, the Netherlands. (1991)

  47. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., Powers, J. G. : A description of the Advanced Research WRF version 3. NCAR tech. Note TN-4175_STR, 113pp. (2008)

  48. Stull, R.B.: Boundary Layer Clouds. In: An Introduction to Boundary Layer Meteorology. pp. 545–585. Springer Netherlands, (1988)

  49. Sun, R., Moorthi, S., Xiao, H., Mechoso, C.R.: Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing. Atmos. Chem. Phys. 10(24), 12261–12272 (2010). https://doi.org/10.5194/acp-10-12261-2010

  50. van der Plas, E., Schmeits, M., Hooijman, N., Kok, K.: A comparative verification of high-resolution precipitation forecasts using model output statistics. Mon. Weather Rev. 145(10), 4037–4054 (2017). https://doi.org/10.1175/mwr-d-16-0256.1

  51. Vislocky, R.L., Fritsch, J.M.: Generalized additive models versus linear regression in generating probabilistic MOS forecasts of aviation weather parameters. Weather Forecast. 10(4), 669–680 (1995). https://doi.org/10.1175/1520-0434(1995)010<0669:gamvlr>2.0.co;2

  52. Wehbe, Y., Ghebreyesus, D., Temimi, M., Milewski, A., Al Mandous, A.: Assessment of the consistency among global precipitation products over the United Arab Emirates. J. Hydrol. Reg. Stud. 12, 122–135 (2017). https://doi.org/10.1016/j.ejrh.2017.05.002

  53. Wehbe, Y., Temimi, M., Ghebreyesus, D.T., Milewski, A., Norouzi, H., Ibrahim, E.: Consistency of precipitation products over the Arabian peninsula and interactions with soil moisture and water storage. Hydrol. Sci. J. 63(3), 408–425 (2018). https://doi.org/10.1080/02626667.2018.1431647

  54. Weston, M., Chaouch, N., Valappil, V., Temimi, M., Ek, M., Zheng, W.: Assessment of the sensitivity to the thermal roughness length in Noah and Noah-MP land surface model using WRF in an arid region. Pure Appl. Geophys. 176, 2121–2137 (2018). https://doi.org/10.1007/s00024-018-1901-2

  55. White, G.H.: Skewness, Kurtosis and Extreme Values of Northern Hemisphere Geopotential Heights. Mon. Weather Rev. 108(9), 1446–1455 (1980). https://doi.org/10.1175/1520-0493(1980)108<1446:skaevo>2.0.co;2

  56. Wilks, D.S.: Preface. In: International Geophysics. p. xi. Elsevier, (1995)

  57. Yousef, L.A., Temimi, M., Wehbe, Y., Al Mandous, A.: Total cloud cover climatology over the United Arab Emirates. Atmos. Sci. Lett. 20(2), e883 (2019). https://doi.org/10.1002/asl.883

  58. Zheng, W., Wei, H., Wang, Z., Zeng, X., Meng, J., Ek, M., Mitchell, K., Derber, J.: Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res. Atmos. 117(D6), D06117 (2012). https://doi.org/10.1029/2011jd015901

Download references

Acknowledgments

We are grateful to UAE National Center of Metrology for providing the station observations that are necessary to conduct the study. This research was partially funded by Etihad Airways for the enhancement of R&D in operational weather forecasts in the UAE. We would like to thank two anonymous reviewers for their detailed and insightful comments and suggestions that helped to improve significantly the quality of the paper.

Author information

Correspondence to Marouane Temimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Soon II An.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valappil, V.K., Temimi, M., Weston, M. et al. Assessing Bias Correction Methods in Support of Operational Weather Forecast in Arid Environment. Asia-Pacific J Atmos Sci (2019). https://doi.org/10.1007/s13143-019-00139-4

Download citation

Keywords

  • Ratio correction
  • Kalman filter
  • Temperature
  • Relative humidity
  • Operational forecasts
  • United Arab Emirates