Advertisement

Decoding Tropospheric Ozone in Hangzhou, China: from Precursors to Sources

  • Rui FengEmail author
  • Kun LuoEmail author
  • Jian-ren Fan
Original Article
  • 9 Downloads

Abstract

For the purpose of providing a tropospheric O3 control strategy for Hangzhou, China, we investigate the influential factors of it using observed data and the WRF-CMAQ model. The result indicates that temperature and relative humidity are the dominant factors and Hangzhou belongs to VOC-limited regime. Long-range/regional transport accounts for 15.4% and 17.4% of O3 in autumn and winter, respectively, showing a north-to-south transport pattern while 14.5% and 19.7% of O3 in spring and summer, respectively, showing a southwest-to-northeast transport pattern. Annual contribution of local industry to local O3 was 59.2%, followed by residence, traffic and agriculture. Ethylene, m/p-xylene, toluene and propylene are the main O3 producers. Therefore, controlling VOCs species that possess the highest ozone formation potentials, afforestation, implementing artificial precipitation and shutdown local industry are the most effective ways to mitigate ozone pollution in Hangzhou.

Keywords

O3-VOC-NOx Ozone formation potentials WRF-CMAQ Regional/long-range transport Local sector contribution 

Notes

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 51390493 and 51476144).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest.

References

  1. Alvim, D., Gatti, L., Corrêa, S., Chiquetto, J., Santos, G., Rossatti, C., Pretto, P., Rozante, J., Figueroa, S., Pendharkar, J., Nobre, P.: Determining VOCs reactivity for ozone forming potential in the megacity of São Paulo. Aerosol Air Qual. Res. 18(9), 2460–2474 (2017).  https://doi.org/10.4209/aaqr.2017.10.0361 CrossRefGoogle Scholar
  2. Astitha, M., Luo, H., Rao, T., Hogrefe, C., Mathur, R., Kumar, N.: Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States. Atmos. Environ. 164, 102–116 (2017).  https://doi.org/10.1016/j.atmosenv.2017.05.020 CrossRefGoogle Scholar
  3. Barnes, B., Cannizzaro, J., English, D., Hu, C.: Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: An assessment of methods. Remote Sens. Environ. 220, 110–123 (2019).  https://doi.org/10.1016/j.rse.2018.10.034 CrossRefGoogle Scholar
  4. Boylan, J.W., Russell, A.G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 40(26), 4946–4959 (2006).  https://doi.org/10.1016/j.atmosenv.2005.09.087 CrossRefGoogle Scholar
  5. Breedt, H., Craig, K., Jothiprakasam, V.: Monin-Obukhov similarity theory and its application to wind flow modelling over complex terrain. J. Wind Eng. Ind. Aerodyn. 182, 308–321 (2018).  https://doi.org/10.1016/j.jweia.2018.09.026 CrossRefGoogle Scholar
  6. Carter, W.: Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 44(40), 5324–5335 (2010).  https://doi.org/10.1016/j.atmosenv.2010.01.026 CrossRefGoogle Scholar
  7. Carter, W., Seinfeld, J.: Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming. Atmos. Environ. 50, 255–266 (2012).  https://doi.org/10.1016/j.atmosenv.2011.12.025 CrossRefGoogle Scholar
  8. Chan, K., Yao, X.: Air pollution in mega cities in China. Atmos. Environ. 42(1), 1–42 (2008).  https://doi.org/10.1016/j.atmosenv.2007.09.003 CrossRefGoogle Scholar
  9. Chan, K., Wang, S., Liu, C., Zhou, B., Wenig, M., Saiz-Lopez, A.: On the summertime air quality and related photochemical processes in the megacity Shanghai, China. Sci. Total Environ. 580, 974–983 (2017).  https://doi.org/10.1016/j.scitotenv.2016.12.052 CrossRefGoogle Scholar
  10. Chen, Y., Zhu, Z., Luo, L., Zhang, J.: Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies. Dyn. Atmos. Oceans. 81, 73–83 (2018).  https://doi.org/10.1016/j.dynatmoce.2018.01.002 CrossRefGoogle Scholar
  11. Cho, S., Morris, R., McEachern, P., Shah, T., Johnson, J., Nopmongcol, U.: Emission sources sensitivity study for ground-level ozone and PM2.5 due to oil sands development using air quality modeling system: part II- source apportionment modeling. Atmos. Environ. 55, 542–556 (2012).  https://doi.org/10.1016/j.atmosenv.2012.02.025 CrossRefGoogle Scholar
  12. Dong, H., Cao, S., Takemi, T., Ge, Y.: WRF simulation of surface wind in high latitudes. J. Wind Eng. Ind. Aerodyn. 179, 287–296 (2018).  https://doi.org/10.1016/j.jweia.2018.06.009 CrossRefGoogle Scholar
  13. Feng, R., Wang, Q., Huang, C., Liang, J., Luo, K., Fan, J., Zheng, H.: Ethylene, xylene, toluene and hexane are major contributors of atmospheric ozone in Hangzhou, China, prior to the 2022 Asian games. Environ. Chem. Lett. (2018).  https://doi.org/10.1007/s10311-018-00846-w
  14. Feng, R., Wang, Q., Huang, C., Liang, J., Luo, K., Fan, J., Cen, K.: Investigation on air pollution control strategy in Hangzhou for post-G20/pre-Asian-games period (2018–2020). Atmos. Pollut. Res. 10(1), 197–208 (2019).  https://doi.org/10.1016/j.apr.2018.07.006 CrossRefGoogle Scholar
  15. Fountoukis, C., Martín-Pomares, L., Perez-Astudillo, D., Bachour, D., Gladich, I.: Simulating global horizontal irradiance in the Arabian Peninsula: sensitivity to explicit treatment of aerosols. Sol. Energy. 163, 347–355 (2018).  https://doi.org/10.1016/j.solener.2018.02.001 CrossRefGoogle Scholar
  16. Fu, Q., Mo, Z., Lyu, D., Zhang, L., Qin, Z., Tang, Q., Yin, H., Xu, P., Wu, L., Lou, X., Chen, Z., Yao, K.: Air pollution and outpatient visits for conjunctivitis: a case-crossover study in Hangzhou, China. Environ. Pollut. 231(2), 1344–1350 (2017).  https://doi.org/10.1016/j.envpol.2017.08.109 CrossRefGoogle Scholar
  17. Ganeshan, M., Murtugudde, R., Imhoff, M.: A multi-city analysis of the UHI-influence on warm season rainfall. Urban Climate. 6, 1–23 (2013).  https://doi.org/10.1016/j.uclim.2013.09.004 CrossRefGoogle Scholar
  18. Gao, J., Zhu, B., Xiao, H., Kang, H., Hou, X., Shao, P.: A case study of surface ozone source apportionment during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China. Sci. Total Environ. 544, 853–863 (2016).  https://doi.org/10.1016/j.scitotenv.2015.12.039 CrossRefGoogle Scholar
  19. Gao, W., Tie, X., Xu, J., Huang, R., Mao, X., Zhou, G., Chang, L.: Long-term trend of O3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors. Sci. Total Environ. 603-604, 425–433 (2017).  https://doi.org/10.1016/j.scitotenv.2017.06.099 CrossRefGoogle Scholar
  20. Geng, F., Tie, X., Xu, J., Zhou, G., Peng, L., Gao, W., Tang, X., Zhao, C.: Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. 42 (29). Atmos. Environ. 42(29), 6873–6883 (2008).  https://doi.org/10.1016/j.atmosenv.2008.05.045 CrossRefGoogle Scholar
  21. Geng, F., Qiang, Z., Tie, X., Huang, M., Ma, X., Deng, Z., Quan, J., Zhao, C.: Aircraft measurements of O3, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region. Atmos. Environ. 43, 584–593 (2009).  https://doi.org/10.1016/j.atmosenv.2008.10.021 CrossRefGoogle Scholar
  22. Geng, F., Tie, X., Guenther, A., Li, G., Cao, J., Harley, P.: Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China. Atmos. Chem. Phys. 11, 10449–10459 (2011).  https://doi.org/10.5194/acp-11-10449-2011 CrossRefGoogle Scholar
  23. He, X., Pang, S., Ma, J., Zhang, Y.: Influence of relative humidity on heterogeneous reactions of O3 and O3/SO2 with soot particles: potential for environmental and health effects. Atmos. Environ. 165, 198–206 (2017).  https://doi.org/10.1016/j.atmosenv.2017.06.049 CrossRefGoogle Scholar
  24. Hou, X., Zhu, B., Fei, D., Wang, D.: The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region. Sci. Total Environ. 502, 641–649 (2015).  https://doi.org/10.1016/j.scitotenv.2014.09.075 CrossRefGoogle Scholar
  25. Hua, Y., Xie, R., Su, Y.: Fiscal spending and air pollution in Chinese cities: identifying composition and technique effects. China Econ. Rev. 47, 156–169 (2018).  https://doi.org/10.1016/j.chieco.2017.09.007 CrossRefGoogle Scholar
  26. Ito, T., Ogino, K., Nagaoka, K., Takemoto, K.: Relationship of particulate matter and ozone with 3-nitrotyrosine in the atmosphere. Environ. Pollut. 236, 948–952 (2018).  https://doi.org/10.1016/j.envpol.2017.10.069 CrossRefGoogle Scholar
  27. Kishné, A., Yiman, Y., Morgan, C., Dornblaser, B.: Evaluation and improvement of the default soil hydraulic parameters for the Noah land surface model. Geoderma. 285, 247–259 (2017).  https://doi.org/10.1016/j.geoderma.2016.09.022 CrossRefGoogle Scholar
  28. Kumar, M., Tsujimura, T., Suzuki, Y.: NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine. Energy. 145, 495–506 (2018).  https://doi.org/10.1016/j.energy.2017.12.148 CrossRefGoogle Scholar
  29. Li, J., Yang, W., Wang, Z., Chen, H., Hu, B., Li, J., Sun, Y., Fu, P., Zhang, Y.: Modeling study of surface ozone source-receptor relationships in East Asia. Atmos. Res. 167, 77–88 (2016a).  https://doi.org/10.1016/j.atmosres.2015.07.010 CrossRefGoogle Scholar
  30. Li, M., Song, Y., Mao, Z., Liu, M., Huang, X.: Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China. Atmos. Environ. 127, 382–392 (2016b).  https://doi.org/10.1016/j.atmosenv.2015.10.075 CrossRefGoogle Scholar
  31. Li, K., Chen, L., Ying, F., White, S., Jang, C., Wu, X., Gao, X., Hong, S., Shen, J., Azzi, M., Cen, K.: Meteorological and chemical impacts on ozone formation: a case study in Hangzhou, China. Atmos. Res. 196, 40–52 (2017).  https://doi.org/10.1016/j.atmosres.2017.06.003 CrossRefGoogle Scholar
  32. Li, K., Hong, L., White, S., Zheng, X., Lv, B., Lin, C., Bao, Z., Wu, X., Gao, X., Ying, F., Shen, J., Azzi, M., Cen, K.: Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou. Environ. Pollut. 232, 42–54 (2018a).  https://doi.org/10.1016/j.envpol.2017.09.016 CrossRefGoogle Scholar
  33. Li, S., Wang, T., Huang, X., Pu, X., Li, M., Chen, P., Yang, X., Wang, M.: Impact of east Asian summer monsoon on surface ozone pattern in China. J. Geophys. Res.-Atmos. 123(2), 1401–1411 (2018b).  https://doi.org/10.1002/2017JD027190 CrossRefGoogle Scholar
  34. Li, G., Zhang, X., Mirzaei, P., Zhang, J., Zhao, Z.: Urban heat island effect of a typical valley city in China: responds to the global warming and rapid urbanization. Sustain. Cities Soc. 38, 736–745 (2018c).  https://doi.org/10.1016/j.scs.2018.01.033 CrossRefGoogle Scholar
  35. Liao, Z., Gao, M., Sun, J., Fan, S.: The impact of synoptic circulation on air quality and pollution-related human health in the Yangtze River Delta region. Sci. Total Environ. 607-608, 838–846 (2016).  https://doi.org/10.1016/j.scitotenv.2017.07.031 CrossRefGoogle Scholar
  36. Liu, X., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D., Jang, C., Wang, W., Hao, J.: Understanding of regional air pollution over China using CMAQ, part II: process analysis and sensitivity of ozone and particulate matter to precursor emissions. Atmos. Environ. 44(30), 3719–3727 (2010).  https://doi.org/10.1016/j.atmosenv.2010.03.036 CrossRefGoogle Scholar
  37. Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., He, K.: Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 173, 223–230 (2018a).  https://doi.org/10.1016/j.atmosenv.2017.11.014 CrossRefGoogle Scholar
  38. Liu, Y., Li, L., An, J., Huang, L., Yan, R., Huang, C., Wang, H., Wang, Q., Wang, M., Zhang, W.: Estimation of biogenic VOCS emissions and its impact on ozone formation over the Yangtze River Delta region, China. Atmos. Environ. 186, 113–128 (2018b).  https://doi.org/10.1016/j.atmosenv.2018.05.027 CrossRefGoogle Scholar
  39. Marais, E., Jacob, D., Wecht, K., Lerot, C., Zhang, L., Yu, K., Kurosu, T., Chance, K., Sauvage, B.: Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: a view from space. Atmos. Environ. 99, 32–40 (2014).  https://doi.org/10.1016/j.atmosenv.2014.09.055 CrossRefGoogle Scholar
  40. Mohr, K., Tao, W., Chern, J., Kumar, S., Peters-Lidard, C.: The NASA-Goddard multi-scale modeling framework–land information system: global land/atmosphere interaction with resolved convection. Environ. Model Softw. 39, 103–115 (2013).  https://doi.org/10.1016/j.envsoft.2012.02.023 CrossRefGoogle Scholar
  41. Oyola, M., Schneider, A., Campbell, J., Joseph, E.: Meteorological influences on tropospheric ozone over suburban Washington, DC. Aerosol Air Qual. Res. 18(5), 1168–1182 (2017).  https://doi.org/10.4209/aaqr.2017.12.0574 CrossRefGoogle Scholar
  42. Qian, Z.: Hangzhou. In: City Profile: Hangzhou. Cities, vol. 48, pp. 42–54 (2015).  https://doi.org/10.1016/j.cities.2015.06.004 Google Scholar
  43. Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., Lin, Y., Jin, T., Wang, A., Liu, Y., Dai, Q., Liu, B., Wang, Y., Mao, H.: Air pollution in China: status and spatiotemporal variations. Environ. Pollut. 227, 334–347 (2017).  https://doi.org/10.1016/j.envpol.2017.04.075 CrossRefGoogle Scholar
  44. Tai, A., Martin, A.: Impacts of ozone air pollution and temperature extremes on crop yields: spatial variability, adaptation and implications for future food security. Atmos. Environ. 169, 11–21 (2016).  https://doi.org/10.1016/j.atmosenv.2017.09.002 CrossRefGoogle Scholar
  45. Tambo, E., Wang, D., Zhou, X.: Tackling air pollution and extreme climate changes in China: implementing the Paris climate change agreement. Environ. Int. 95, 152–156 (2016).  https://doi.org/10.1016/j.envint.2016.04.010 CrossRefGoogle Scholar
  46. Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q., Zhang, Y.: Exploring ozone pollution in Chengdu, southwestern China: a case study from radical chemistry to O3-VOC-NOx sensitivity. Sci. Total Environ. 636, 775–786 (2018).  https://doi.org/10.1016/j.scitotenv.2018.04.286 CrossRefGoogle Scholar
  47. Telesnicki, M., Martínez-Ghersa, M., Ghersa, C.: Plant oxidative status under ozone pollution as predictor for aphid population growth: the case of Metopolophium dirhodum (Hemiptera: Aphididae) in Triticum aestivum (Poales: Poaceae). Biochem. Syst. Ecol. 77, 51–56 (2018).  https://doi.org/10.1016/j.bse.2018.02.004 CrossRefGoogle Scholar
  48. Tie, X., Geng, F., Guenther, A., Cao, J., Greenburg, J., Zhang, R., Apel, E., Li, G., Weinheimer, A., Chen, J., Cai, C.: Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign. Atmos. Chem. Phys. 13, 5655–5669 (2013).  https://doi.org/10.5194/acp-13-5655-2013 CrossRefGoogle Scholar
  49. Wang, T., Wei, X., Ding, A.: Increasing surface ozone concentrations in the background-level atmosphere of Southern China, 1994–2007. Atmos. Chem. Phys. 9(16), 6217–6227 (2009)CrossRefGoogle Scholar
  50. Wang, P., Schade, G., Estes, M., Ying, Q.: Improved MEGAN predictions of biogenic isoprene in the contiguous United States. Atmos. Environ. 148, 337–351 (2017).  https://doi.org/10.1016/j.atmosenv.2016.11.006 CrossRefGoogle Scholar
  51. Wang, Y., Du, H., Xu, Y., Lu, D., Wang, X., Guo, Z.: Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 631-632, 921–933 (2018a).  https://doi.org/10.1016/j.scitotenv.2018.03.050 CrossRefGoogle Scholar
  52. Wang, Q., Li, S., Dong, M., Li, W., Gao, X., Ye, R., Zhang, D.: VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos. Environ. 182, 234–241 (2018b).  https://doi.org/10.1016/j.atmosenv.2018.03.034 CrossRefGoogle Scholar
  53. Wie, J., Moon, B.: Impact of the Western North Pacific subtropical high on summer surface ozone in the Korean Peninsula. Atmos. Pollut. Res. 9(4), 655–661 (2018).  https://doi.org/10.1016/j.apr.2017.12.012 CrossRefGoogle Scholar
  54. Wu, W.: City profile: Shanghai. Cities. 16(3), 207–216 (1999).  https://doi.org/10.1016/S0264-2751(98)00047-X CrossRefGoogle Scholar
  55. Wu, X., Chen, S., Guo, J., Gao, G.: Effect of air pollution on the stock yield of heavy pollution enterprises in China's key control cities. J. Clean. Prod. 170, 399–406 (2018).  https://doi.org/10.1016/j.jclepro.2017.09.154 CrossRefGoogle Scholar
  56. Xiao, H., Sun, J., Bian, X., Dai, Z.: GPU acceleration of the WSM6 cloud microphysics scheme in GRAPES model. Comput. Geosci. 59, 156–162 (2013).  https://doi.org/10.1016/j.cageo.2013.06.016 CrossRefGoogle Scholar
  57. Xu, Z., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Sun, P., Ding, A.: Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China. Atmos. Environ. 168, 112–124 (2017).  https://doi.org/10.1016/j.atmosenv.2017.08.035 CrossRefGoogle Scholar
  58. Zepka, G., Pinto, O., Saraiva, A.: Lightning forecasting in southeastern Brazil using the WRF model. Atmos. Res. 135-136, 344–362 (2014).  https://doi.org/10.1016/j.atmosres.2013.01.008 CrossRefGoogle Scholar
  59. Zhang, W., Wang, G., Liu, X., Feng, Z.: Effects of elevated O3 exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycine max (L.) Merr.) in Northeast China. Plant Sci. 226, 172–181 (2014).  https://doi.org/10.1016/j.plantsci.2014.04.020 CrossRefGoogle Scholar
  60. Zhang, Y., Qu, S., Zhao, J., Zhu, G., Zhang, Y., Lu, X., Sabel, C., Wang, H.: Quantifying regional consumption-based health impacts attributable to ambient air pollution in China. Environ. Int. 112, 100–106 (2018).  https://doi.org/10.1016/j.envint.2017.12.021 CrossRefGoogle Scholar
  61. Zhao, Z., Wang, Y.: Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over eastern China. Atmos. Environ. 170, 197–204 (2017).  https://doi.org/10.1016/j.atmosenv.2017.09.024 CrossRefGoogle Scholar
  62. Zhao, Y., Xia, Y., Zhou, Y.: Assessment of a high-resolution NOX emission inventory using satellite observations: a case study of southern Jiangsu, China. Atmos. Environ. 190, 135–145 (2018).  https://doi.org/10.1016/j.atmosenv.2018.07.029 CrossRefGoogle Scholar
  63. Zouzelka, R., Rathousky, J.: Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl. Catal. B Environ. 217, 466–476 (2017).  https://doi.org/10.1016/j.apcatb.2017.06.009 CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.China National Building Materials Group CorporationChina New Building Materials Design and Research InstituteHangzhouPeople’s Republic of China
  3. 3.Department of chemical and biological engineeringUniversity of SheffieldSheffieldUK
  4. 4.College of biological sciencesUniversity of Minnesota-Twin citiesMinneapolisUSA

Personalised recommendations