Advertisement

Comparing the Performance of Dynamical and Statistical Downscaling on Historical Run Precipitation Data over a Semi-Arid Region

  • Nasrin Salehnia
  • Fateme Hosseini
  • Ali FaridEmail author
  • Sohrab Kolsoumi
  • Azar Zarrin
  • Majid Hasheminia
Original Article
  • 39 Downloads

Abstract

Precise evaluations of climate model precipitation outputs are valuable for making decisions regarding agriculture, water resource, and ecosystem management. Many downscaling techniques have been developed in the past few years for projection of weather variables. We need to apply dynamical and statistical downscaling (DD and SD) to bridge the gap between the coarse resolution general circulation model (GCM) outputs and the need for high-resolution climate information over a semi-arid region. We compare the requirements of DD (RegCM4) and SD (Delta) approaches, evaluate the historical run of NNRP1 data in comparison with station data, and analyze the changes in wet days and precipitation values through both methods during 1990–2010. In this study, we did not want to use prediction data under different scenarios of climate change, and we have just applied observed data to assess the amount of precise of NNRP1 data, over the observed period. SD method requires less time and computing power than DD. The DD approach performs better over the evaluation period according to efficiency criteria. In general, the Pearson correlation in DD with observation data in evaluation period was higher than (r > 0.72 and R2 > 0.52) SD (r > 0.65 and R2 > 0.41) over three study stations. Similarly, MAE and NSE show better results from DD relative to SD. SD underestimates the number annual mean wet-days for all three stations examined. DD overestimates a number of annual mean wet-days, but with less deviation from the observed mean.

Keywords

Delta method RegCM4 NNRP1 Bias correction Resolution Wet-day 

Notes

Acknowledgments

We would like to thank K. Grace CRUMMER (Institute for Sustainable Food Systems, University of Florida, USA) for editing and improving the language of the manuscript. The authors are grateful for the support of a grant of the Ferdowsi University of Mashhad, Iran. As well, the authors are grateful for the thoughtful comments provided by one the anonymous reviewers, which prompted significant improvements to the manuscript.

References

  1. Abbasnia, M., Tavousi, T., Khosravi, M.: Assessment of future changes in the maximum temperature at selected stations in Iran based on HADCM3 and CGCM3 models. Asia-Pacific J Atmos Sci. 52, 371 (2016).  https://doi.org/10.1007/s13143-016-0006-z CrossRefGoogle Scholar
  2. AgriMetSoftn.d.: SD-GCM Tool [Computer software]. Available at: https://agrimetsoft.com/SD-GCM.aspx. (2017)
  3. Ayar, P.V., Vrac, M., Bastin, S., Carreau, J., Déqué, M., Gallardo, C.: Intercomparison of statistical and dynamical downscaling models under the EURO-and MED-CORDEX initiative framework: present climate evaluations. Clim. Dyn. 46(3–4), 1301–1329 (2016).  https://doi.org/10.1007/s00382-015-2647-5 CrossRefGoogle Scholar
  4. Benestad, R.E.: Downscaling precipitation extremes: correction of analog models through PDF predictions. Theor. Appl. Climatol. 100, 1–21 (2010).  https://doi.org/10.1007/s00704-009-0158-1 CrossRefGoogle Scholar
  5. Boo, K., Kwon, W., Oh, J., Baek, H.: Response of global warming on regional climate change over Korea: an experiment with the MM5 model. Geophys. Res. Lett. 31, L21206 (2004).  https://doi.org/10.1029/2004GL021171 Google Scholar
  6. Buishand, T.A., Shabaliva, M.V., Brandsma, T.: On the choice of the temporal aggregation level for statistical downscaling of precipitation. J. Clim. 17, 1816–1827 (2003)CrossRefGoogle Scholar
  7. Busuioc, A., Giorgi, F., Bi, X., Lonita, M.: Comparison of regional climate model and statistical downscaling simulations of different winter precipitation change scenarios over Romania. Theor. Appl. Climatol. 86, 101–120 (2006)CrossRefGoogle Scholar
  8. Casanueva, A., Herrera, S., Fernández, J., Gutiérrez, J.M.: Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative. Clim. Chang. 137(3–4), 411–426 (2016).  https://doi.org/10.1007/s10584-016-1683-4 CrossRefGoogle Scholar
  9. Chen, J., Brissette, F.P., Leconte, R.: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 401(3–4), 190–202 (2011).  https://doi.org/10.1016/j.jhydrol.2011.02.020 CrossRefGoogle Scholar
  10. Dessu, S.B., Melesse, A.M.: Evaluation and comparison of satellite and GCM rainfall estimates for the Mara River Basin, Kenya/Tanzania. Chapter Climate Change and Water Resources Volume 25 of the series The Handbook of Environmental Chemistry 29–45 (2013).  https://doi.org/10.1007/698_2013_219
  11. Eckhardt, K., Ulbrich, U.: Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol. 284, 244–252 (2003)CrossRefGoogle Scholar
  12. Frost, A.J., Charles, S.P., Timbal, B., Chiew, F.H.S., Mehrotra, R., Nguyen, K.C., Chandler, R.E., McGregor, J.L., Fu, G., Kirono, D.G.C., Fernandez, E., Kent, D.M.: A comparison of multi-site daily rainfall downscaling techniques under Australian conditions. J. Hydrol. 408(1-2), 1–18 (2011)CrossRefGoogle Scholar
  13. Giorgi, F., Marinucci, M.R., Bates, G.T.: Development of a second-generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes. Mon. Weather Rev. 121(10), 2794–2813 (1993a).  https://doi.org/10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2 CrossRefGoogle Scholar
  14. Giorgi, F., Marinucci, M.R., Bates, G.T., De Canio, G.: Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon. Weather Rev. 121(10), 2814–2832 (1993b).  https://doi.org/10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2 CrossRefGoogle Scholar
  15. Giorgi, F., Hewitson, B., Christensen, J.H., Hulme, M., von Storch, H., Whetton, P., Jones, R., Mearns, L.O., Fu, C.: Regional climate information: evaluation and projections, in Climate Change 2001: The Scientific Basis, chap. 10, pp. 583–638. Cambridge Univ. Press, Cambridge (2001)Google Scholar
  16. Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M., Bi, X., Elguindi, N., Diro, G., Nair, V., Giuliani, G.: RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim. Res. 52, 7–29 (2012).  https://doi.org/10.3354/cr01018 CrossRefGoogle Scholar
  17. Grell, G.A., J. Dudhia, and D.R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5)Google Scholar
  18. Gutmann, E.D., Rasmussen, R.M., Liu, C., Ikeda, K., Gochis, D.J., Clark, M.P., Dudhia, J., Thompson, G.: A Comparison of Statistical and Dynamical Downscaling of Winter Precipitation over Complex Terrain. J. Clim. 25(1), 262–281 (2012)CrossRefGoogle Scholar
  19. Gutowski, W.J., Wilby, R.L., Hay, L.E., Anderson, C.J., Arritt, R.W., Clark, M.P., Leavesley, G.H., Pan, Z., Da Silva, R., Takle, E.S.: Statistical and dynamical downscaling of global model output for US national assessment hydrological analyses, Proceedings of the 11th Symposium on Global Change Studies, Long Beach, CA, January 9–14. (2000)Google Scholar
  20. Hay, L.E., Wilby, R.L., Leavesley, G.H.: A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 36(2), 387–397 (2000).  https://doi.org/10.1111/j.1752-1688.2000.tb04276.x CrossRefGoogle Scholar
  21. Hayhoe, K., et al. : Past and future changes in climate and hydrological indicators in the U.S. northeast, Clim. Dyn. 28, 381– 407 (2006).  https://doi.org/10.1007/s00382-006-0187-8
  22. Haylock, M.R., Cawley, G.C., Harpham, C., Wilby, R.L., Goodess, C.M.: Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. Int. J. Climatol. 26(10), 1397–1415 (2006).  https://doi.org/10.1002/joc.1318 CrossRefGoogle Scholar
  23. Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynov, M., Kysely, J., Tveito, O.E.: Classifications of atmospheric circulation patterns – recent advances and applications. Trends and directions in climate research: Ann. N.Y. Acad. Sci. 1146, 105–152 (2008).  https://doi.org/10.1196/annals CrossRefGoogle Scholar
  24. Imbert, A., Benestad, R.: An improvement of analog model strategy for more reliable local climate change scenarios. Theor. Appl. Climatol. 82(3–4), 245–255 (2005).  https://doi.org/10.1007/s00704-005-0133-4 CrossRefGoogle Scholar
  25. IPCC: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and NewYork, USA. 1535pp. (2013)Google Scholar
  26. Jang, S., Kavvas, M.L., Asce, F.: Downscaling global climate simulations to regional scales: statistical downscaling versus dynamical downscaling. J. Hydrol. Eng. A4014006-1–A4014006-18 (2013).  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000939
  27. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J.: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77(3), 437–471 (1996).  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  28. Kang, H.S., Tangang, F., Krishnan, R.: Regional climate downscaling over Asia-Pacific region. Asia-Pacific J Atmos Sci. 52, 77 (2016).  https://doi.org/10.1007/s13143-016-0023-y CrossRefGoogle Scholar
  29. Kidson, J.W., Thompson, C.S.: A comparison of statistical and model-based downscaling techniques for estimating local climate variations. J. Clim. 11, 735–753 (1998)CrossRefGoogle Scholar
  30. Kim, Y., Jun, M., Min, S.K., Suh, M.S., Kang, H.S.: Spatial analysis of future east Asian seasonal temperature using two regional climate model simulations. Asia-Pacific J Atmos Sci. 52, 237 (2016a).  https://doi.org/10.1007/s13143-016-0022-z CrossRefGoogle Scholar
  31. Kim, M.K., Kim, S., Kim, J., Heo, J., Park, J.S., Kwon, W.T., Suh, M.S.: Statistical downscaling for daily precipitation in Korea using combined PRISM, RCM, and quantile mapping: Part 1, methodology and evaluation in historical simulation. Asia-Pacific J Atmos Sci. 52, 79 (2016b).  https://doi.org/10.1007/s13143-016-0010-3 CrossRefGoogle Scholar
  32. Li, H., Sheffield, J., Wood, E.F.: Bias correction of monthly precipitation and temperature fields from intergovernmental panel on climate change AR4 models using equidistant quantile matching. J. Geophys. Res. 115, D10101 (2010).  https://doi.org/10.1029/2009JD012882 CrossRefGoogle Scholar
  33. Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., Merchant, J.W.: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21(6–7), 1303–1330 (2000).  https://doi.org/10.1080/014311600210191 CrossRefGoogle Scholar
  34. MacLean, A.: Statistical Evaluation of WATFLOOD (Ms), University of Waterloo, Ontario, Canada, (2005)Google Scholar
  35. Manzanas, R., Gutiérrez, J.M., Fernandez, J., van Meijgaard, E., Calmanti, S., Magariño, M.E., Cofiño, A.S., Herrera, S.: Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: added value for user applications. Climate Services. 9, 44–56, ISSN 2405-8807 (2017a).  https://doi.org/10.1016/j.cliser.2017.06.004 CrossRefGoogle Scholar
  36. Manzanas, R., Lucero, A., Weisheimer, A., Gutiérrez, J.M.: Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts? Clim. Dyn. (2017b).  https://doi.org/10.1007/s00382-017-3668-z
  37. Maraun, D.: Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J. Clim. 26(6), 2137–2143 (2013)CrossRefGoogle Scholar
  38. Maraun, D.: Bias correcting climate change simulations: a critical review. Curr. Clim. Change Rep. 2(4), 211–220 (2016).  https://doi.org/10.1007/s40641-016-0050-x CrossRefGoogle Scholar
  39. Maraun D., Wetterhall, F., Ireson, A.M., Chandler, R.E., Kendon, E.J., Widmann, M., Brienen, S., Rust, H.W., Sauter, T., Themeßl, M., Venema, V.K.C., Chun, K.P., Goodess, C.M., Jones, R.G., Onof, C., Vrac, M., Thiele-Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 48(3) (2010).  https://doi.org/10.1029/2009RG000314
  40. Maurer, E.P., Hidalgo, H.G.: Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 12(2), 551–563 (2008).  https://doi.org/10.5194/hess-12-551-2008 CrossRefGoogle Scholar
  41. Mearns, L.O., Bogardi, I., Giorgi, F., Matyasovszky, I., Palecki, M.: Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling. J. Geophys. Res. 104, 6603–6621 (1999)CrossRefGoogle Scholar
  42. Meehl, G., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J., Stouffer, R., Taylor, K.: The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007)CrossRefGoogle Scholar
  43. Mehrotra, R., Evans, J.P., Sharma, A., Sivakumar, B.: Evaluation of downscaled daily rainfall hindcasts over Sydney, Australia using statistical and dynamical downscaling approaches. Hydrol. Res. 45(2), 226–249 (2013)Google Scholar
  44. Murphy, J.: An evaluation of statistical and dynamical techniques for downscaling local climate. J. Clim. 12, 2256–2284 (1999)CrossRefGoogle Scholar
  45. Murphy, J.: Predictions of climate change over Europe using statistical and dynamical downscaling techniques. Int. J. Climatol. 20, 489–501 (2000)CrossRefGoogle Scholar
  46. Nash, J.E., Sutcliffe, J.V.: River flow forecasting through conceptual models part 1 – a discussion of principles. J. Hydrol. 10, 282–290 (1970)CrossRefGoogle Scholar
  47. Nikulin, G., Asharaf, S., Magariño, M.E., Calmanti, S., Cardoso, R.M., et al.: Dynamical and statistical downscaling of a global seasonal hindcast in eastern Africa. Climate Services. 9, 72–85, ISSN 2405-8807 (2017).  https://doi.org/10.1016/j.cliser.2017.11.003 CrossRefGoogle Scholar
  48. Oshima, N., Kato, H., Kadokura, S.: An application of statistical downscaling to estimate surface air temperature in Japan. J. Geophys. Res. 107(D10), 4095 (2002).  https://doi.org/10.1029/2001JD000762 CrossRefGoogle Scholar
  49. Pal, J.S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Rauscher, S.A., Gao, X., Francisco, R., Zakey, A., Winter, J.: Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull. Am. Meteorol. Soc. 88(9), 1395–1409 (2007).  https://doi.org/10.1175/BAMS-88-9-1395 CrossRefGoogle Scholar
  50. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W.: An improved in situ and satellite SST analysis for climate. J. Clim. 15(13), 1609–1625 (2002).  https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 CrossRefGoogle Scholar
  51. Robertson, A.W., Qian, J.H., Tippett, M.K., Moron, V., Lucero, A.: Downscaling of seasonal rainfall over the Philippines: dynamical versus statistical approaches. Mon. Weather Rev. 140, 1204–1218 (2011).  https://doi.org/10.1175/MWR-D-11-00177.1 CrossRefGoogle Scholar
  52. Sachindra, D.A., Huang, F., Barton, A., Perera, B.J.C.: Statistical downscaling of general circulation model outputs to precipitation – part 2: bias-correction and future projections. Int. J. Climatol. 34, 3282–3303 (2014).  https://doi.org/10.1002/joc.3915 CrossRefGoogle Scholar
  53. Schmidli, J., Goodness, C.M., Frei, C., Haylock, M.R., Hundecha, Y., Ribalaygua, J., Schmith, T.: Statistical and dynamical downscaling of precipitation: an evaluation and comparison of scenarios for the European Alps. J. Geophys. Res. 112, D04105 (2007).  https://doi.org/10.1029/2005JD007026 CrossRefGoogle Scholar
  54. Souvignet, M., Heinrich, J.: Statistical downscaling in the arid Central Andes: uncertainty analysis of multi-model simulated temperature and precipitation. Theor. Appl. Climatol. 106, 229 (2011).  https://doi.org/10.1007/s00704-011-0430-z CrossRefGoogle Scholar
  55. Su, H., Xiong, Z., Yan, X., Dai, X., Wei, W.: Comparison of monthly rainfall generated from dynamical and statistical downscaling methods: a case study of the Heihe River Basin in China. Theor. Appl. Climatol. 129(1–2), 437 (2017).  https://doi.org/10.1007/s00704-016-1771-4 CrossRefGoogle Scholar
  56. Sunyer, M.A., Madsen, H., Ang, P.H.: 2010: a comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res. 103, 119–128 (2012).  https://doi.org/10.1016/j.atmosres.2011.06.011 CrossRefGoogle Scholar
  57. Teutschbein, C., Seibert, J: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 456–457, 12–29 (2012)Google Scholar
  58. Themeßl, M.J., Gobiet, A., Heinrich, G.: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 112(2), 449–468 (2012)CrossRefGoogle Scholar
  59. Tryhorn, L., DeGaetano, A.: A comparison of techniques for downscaling extreme precipitation over the Northeastern United States. Int. J. Climatol. 31(13), 1975–1989 (2011).  https://doi.org/10.1002/joc.2208 CrossRefGoogle Scholar
  60. Ullah, A., Salehnia, N., Kolsoumi, S., Ahmad, A., Khaliq, T.: Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through genetic algorithm in Punjab, Pakistan. Ecol. Indic. 90, 569–576 (2018).  https://doi.org/10.1016/j.ecolind.2018.03.053 CrossRefGoogle Scholar
  61. Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., Somot, S.: Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Nat. Hazards Earth Syst. Sci. 12, 2769–2784 (2012).  https://doi.org/10.5194/nhess-12-2769-2012 CrossRefGoogle Scholar
  62. Wang, J.F., Zhang, X.B.: Downscaling and projection of winter extreme daily precipitation over North America. J. Clim. 21(5), 923–937 (2008)CrossRefGoogle Scholar
  63. Wang, L., Ranasinghe, R., Maskey, S., van Gelder, P.H.A.J.M., Vrijling, J.K.: Comparison of empirical statistical methods for downscaling daily climate projections from CMIP5 GCMs: a case study of the Huai River Basin, China. Int. J. Climatol. 36, 145–164 (2016).  https://doi.org/10.1002/joc.4334 CrossRefGoogle Scholar
  64. Wetterhall, F., Pappenberger, F., He, Y., Freer, J., Cloke, H.L.: Conditioning model output statistics of regional climate model precipitation on circulation patterns. Nonlin. Processes Geophys. 19, 623–633 (2012. www.nonlin-processes-geophys.net/19/623/2012/).  https://doi.org/10.5194/npg-19-623-2012 CrossRefGoogle Scholar
  65. Wilby, R.L., Hay, L.E., Gutowski, W.J., Arritt, R.W., Tackle, E.S., Leavesley, G.H., Clark, M.: Hydrological responses to dynamically and statistically downscaled general circulation model output. Geophys. Res. Lett. 27(8), 1199–1202 (2000)CrossRefGoogle Scholar
  66. Wood, A.W., Leung, L.R., Sridhar, V. et al.: Climatic Change 62–189 (2004).  https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
  67. Yarnal, B., Comrie, A.C., Frakes, B., Brown, D.P.: Developments and prospects in synoptic climatology. Int. J. Climatol. 21, 1923–1950 (2001)CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2019

Authors and Affiliations

  • Nasrin Salehnia
    • 1
    • 2
  • Fateme Hosseini
    • 2
  • Ali Farid
    • 2
    Email author
  • Sohrab Kolsoumi
    • 1
  • Azar Zarrin
    • 3
  • Majid Hasheminia
    • 2
  1. 1.Agrimetsoft, Roshd CenterFerdowsi University of MashhadMashhadIran
  2. 2.Faculty of AgricultureFerdowsi University of MashhadMashhadIran
  3. 3.Department of GeographyFerdowsi University of MashhadMashhadIran

Personalised recommendations