Advertisement

Asia-Pacific Journal of Atmospheric Sciences

, Volume 55, Issue 3, pp 293–301 | Cite as

The Potential of Using Tree-Ring Data from Jeju Island to Reconstruct Climate in Subtropical Korea and the Western North Pacific

  • Peng Zhang
  • Jee-Hoon JeongEmail author
  • Hans W. LinderholmEmail author
  • Ji-Yoon Jeong
  • Riikka Salo
  • Baek-Min Kim
  • Min-Seok Kim
Original Article

Abstract

Annual rings from trees have been used to infer past climate variability beyond the observational records. Here, we assess if two conifer species from the humid subtropical island of Jeju, South Korea, can be used as proxies for past regional climate variability and large-scale ocean current variability, such as the Kuroshio Current, over the Western North Pacific. Korean red pine (Pinus densiflora) and Korean fir (Abies koreana) were sampled close to their altitudinal limits of distribution on the southern slopes of the volcano Mt. Halla at 1320 m and 1640 m a.s.l., respectively. Comparison with climate variables from nearby meteorological stations indicated a significant positive association between temperature in January/April and Korean red pine growth, which suggests that the red pine can be used to reconstruct mid-winter/spring temperatures back in time. Positive correlations were also found between the tree-ring growth and October (for Korean fir) and January (for Korean red pine) precipitation. Moreover, pine tree growth showed significant multi-month associations with sea surface temperatures over the Western North Pacific and variability of the Kuroshio Extension. The results suggest that subtropical trees from South Korea can be used as indicators of past climate variability on local to regional scales, and possibly also to infer the past variability of the Kuroshio Current in the Western North Pacific.

Keywords

Dendroclimatology Jeju Island Korean fir Korean red pine Western North Pacific 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (2016R1A6A1A03012647). H. Linderholm was supported by the Swedish Research Council (VR). This research contributes to the strategic research area Modelling the Regional and Global Earth system (MERGE) and Biodiversity and Ecosystem services in a Changing Climate (BECC). This is contribution # 37 from the Sino-Swedish Centre for Tree-Ring Research (SISTRR). P. Zhang was supported by the National Research Foundation of Korea (NRF-2012M1A2A2671852).

References

  1. Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., Nelkin, E.: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 4, 1147–1167 (2003)CrossRefGoogle Scholar
  2. Altman, J., Dolezal, J., Cerny, T., Song, J.S.: Forest response to increasing typhoon activity on the Korean peninsula: evidence from oak tree-rings. Glob. Chang. Biol. 19, 498–504 (2013)CrossRefGoogle Scholar
  3. Byun, J.G., Lee, W.K., Kim, M., Kwak, D.A., Kwak, H., Park, T., Byun, W.H., Son, Y., Choi, J.K., Lee, Y.J., Saborowski, J., Chung, D.J., Jung, J.H.: Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. J. Plant Ecol. 6, 380–392 (2013)CrossRefGoogle Scholar
  4. Carton, J.A., Giese, B.: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Weather Rev. 136, 2999–3017 (2008)CrossRefGoogle Scholar
  5. Chen, F., Yuan, Y., Wei, W., Yu, S., Wang, H.: Tree-ring response of subtropical tree species in Southeast China on regional climate and sea-surface temperature variations. Trees. 29(1), 17–24 (2015)CrossRefGoogle Scholar
  6. Chen, D., Fang, K., Li, Y., Dong, Z., Zhang, Y., Zhou, F.: Response of Pinus taiwanensis growth to climate changes at its southern limit of Daiyun Mountain, mainland China Fujian Province. Sci. China Earth Sci. 59(2), 328–336 (2016)CrossRefGoogle Scholar
  7. Choi, W.J., Lee, S.M., Chang, S.X., Ro, H.M.: Variations of δ13C and δ15N in Pinus densiflora tree-rings and their relationship to environmental changes in eastern Korea. Water Air Soil Pollut. 164, 173–187 (2005)CrossRefGoogle Scholar
  8. Chung, C.-H.: Vegetation response to climate change on Jeju Island, South Korea, during the last deglaciation based on pollen record. Geosci. J. 11, 147–155 (2007)CrossRefGoogle Scholar
  9. Cook, E.R.: A time series analysis approach to tree ring standardization, school of renewable natural resources. In: University of Arizona (1985)Google Scholar
  10. Ding, Y.: Monsoons over China. Springer, New York (1991) 419 ppGoogle Scholar
  11. Fritts, H.C.: Tree-Rings and Climate. Academic Press, London (1976) 567 ppGoogle Scholar
  12. Holmes, R.L.: Users manual for program COFECHA. Laboratory of Tree-Ring Research. University of Arizona, Arizona (1999)Google Scholar
  13. Huang, B., Banzon, V.F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T.C., Smith, T.M., Thorne, P.W., Woodruff, S.D., Zhang, H.-M.: Extended Reconstructed Sea surface temperature version 4 (ERSST.v4): part I. upgrades and intercomparisons. J. Clim. 28, 911–930 (2014).  https://doi.org/10.1175/JCLI-D-14-00006.1 CrossRefGoogle Scholar
  14. Huang, B., Thorne, P.W., Smith, T.M., Liu, W., Lawrimore, J., Banzon, V.F., Zhang, H.M., Peterson, T.C., Menne, M.: Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) Version 4 (v4). J. Clim. 29(9), 3119–3142 (2016)CrossRefGoogle Scholar
  15. Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S., Zhang, H.-M.: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30(20), 8179–8205 (2017)CrossRefGoogle Scholar
  16. IPCC: Summary for policymakers. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)Google Scholar
  17. Jang, W., Keyes, C.R., Running, S.W., Lim, J.-H., Park, P.S.: Climate–growth relationships of relict Picea jezoensis at Mt. Gyebang, South Korea. For. Sci. Technol. 11, 19–26 (2015)Google Scholar
  18. Kang, H.G., Kim, C.S., Kim, E.S.: Human influence, regeneration, and conservation of the Gotjawal forests in Jeju Island, Korea. J. Marine Island Cultures. 2(2), 85–92 (2013)CrossRefGoogle Scholar
  19. Kawabe, M.: Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys. Oceanogr. 25, 3103–3117 (1995)CrossRefGoogle Scholar
  20. Kim, E.S., Lee, J.W., Choi, I.J., Lim, W., Choi, J., Oh, C.H., Lee, S.H., Kim, Y.S.: Disturbance in seedling development of Korean fir (Abies koreana Wilson) tree species on higher altitude forests of Mt. Hallasan National Park, the central part of Jeju Island, Korea. J. Ecol. Environ. 41(1), 22 (2017)CrossRefGoogle Scholar
  21. Koo, K.A., Park, W.K., Kong, W.S.: Dendrochronological analysis of Abies koreana W. at Mt Halla, Korea: effects of climate change on the growths. Korean J. Ecol. 24, 281–288 (2001)Google Scholar
  22. Larkin, N.K., Harrison, D.E.: ENSO warm (El Niño) and cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Clim. 15(10), 1118–1140 (2002)CrossRefGoogle Scholar
  23. Li, K.: Climate of the China Seas and Northwestern Pacific (in Chinese), p. 640. China Ocean Press, Beijing (1993)Google Scholar
  24. Liu, W., Huang, B., Thorne, P.W., Banzon, V.F., Zhang, H.-M., Freeman, E., Lawrimore, J., Peterson, T.C., Smith, T.M., Woodruff, S.D.: Extended reconstructed sea surface temperature version 4 (ERSST.v4): part II. Parametric and structural uncertainty estimations. J. Clim. 28, 931–951 (2014).  https://doi.org/10.1175/JCLI-D-14-00007.1 CrossRefGoogle Scholar
  25. Luong, T.H., Jang, K.S., Lim, H.W., Choi, W.J., Lee, K.H.: Correlation of tree ring growths of four major species with climate changes in South Korea. For. Sci. Technol. 9, 180–186 (2013)Google Scholar
  26. Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., Wanner, H.: European seasonal and annual temperature variability, trends and extremes since 1500. Science. 303, 1499–1503 (2004)CrossRefGoogle Scholar
  27. Mantua, N.J., Hare, S.R.: The Pacific decadal oscillation. J. Oceanogr. 58(1), 35–44 (2002)CrossRefGoogle Scholar
  28. Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J.F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., Timmermann, A.: Information from paleoclimate archives. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)Google Scholar
  29. Morice, C.P., Kennedy, J.J., Rayner, N.A., Jones, P.D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. 117(D08101), 1–22 (2012)Google Scholar
  30. PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia. Nat. Geosci. 6, 339–346 (2013)CrossRefGoogle Scholar
  31. Park, W.-K., Yadav, R.R.: A dendroclimatic analysis of Pinus densiflora from Mt. Chiri in southern Korea. Ann. Sci. For. 55, 451–459 (1998)CrossRefGoogle Scholar
  32. Qiu, B.: Interannual variability of the Kuroshio extension system and its impact on the wintertime SST field. J. Phys. Oceanogr. 30(6), 1486–1502 (2000)CrossRefGoogle Scholar
  33. Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108(D14), 4407 (2003).  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  34. St George, S.: An overview of tree-ring width records across the northern hemisphere. Quat. Sci. Rev. 95, 132–150 (2014)CrossRefGoogle Scholar
  35. Um, M.J., Kim, Y.: Spatial variations in temperature in a mountainous region of Jeju Island, South Korea. Int. J. Climatol. 37(5), 2413–2423 (2017)CrossRefGoogle Scholar
  36. Wang, B., Wu, R., Fu, X.: Pacific–east Asian teleconnection: how does ENSO affect east Asian climate? J. Clim. 13(9), 1517–1536 (2000)CrossRefGoogle Scholar
  37. Wigley, T.M., Briffa, K.R., Jones, P.D.: On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23(2), 201–213 (1984)CrossRefGoogle Scholar
  38. Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M.J., Alexander, M., Qiu, B., Visbeck, M., Chang, P., Giese, B.: Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Chang. 2(3), 161–166 (2012)CrossRefGoogle Scholar
  39. Zhu, Y., Yang, X.: Relationships between Pacific decadal oscillation (PDO) and climate variability in China. Acta Meteorol. Sinica. 61, 641–653 (2003)Google Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of OceanographyChonnam National UniversityGwangjuSouth Korea
  2. 2.Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  3. 3.Department of Environmental Atmospheric SciencesPukyong National UniversityBusanSouth Korea

Personalised recommendations