Advertisement

Asia-Pacific Journal of Atmospheric Sciences

, Volume 54, Issue 4, pp 639–648 | Cite as

Calibration of the Pyranometer Sensitivity Using the Integrating Sphere

  • Bu-Yo Kim
  • Kyu-Tae LeeEmail author
  • Il-Sung Zo
  • Sang-Ho Lee
  • Hyun-Seok Jung
  • Se-Hun Rim
  • Jeong-Pil Jang
Notes and Correspondence
  • 97 Downloads

Abstract

The pyranometer for observing the solar radiation reaching the surface of the earth is manufactured by various companies around the world. The sensitivity of the pyranometer at the observatory is required to be properly controlled based on the reference value of the World Radiometric Center (WRC) and the observatory environment; otherwise, the observational data may be subject to a large error. Since the sensitivity of the pyranometer can be calibrated in an indoor or outdoor calibration, this study used a CSTM-USS-4000C Integrating Sphere by Labsphere Inc. (USA) to calibrate the sensitivity of CMP22 pyranometer by Kipp&Zonen Inc. (Netherlands). Consequently, the factory sensitivity of CMP22 was corrected from 8.68 μV·(Wm−2)−1 to 8.98 μV·(Wm−2)−1, and the result from the outdoor calibration according to the observatory environment was 8.90 μV·(Wm−2)−1. After the indoor calibration of the pyranometer sensitivity, the root mean square error (RMSE) of the observational data at the observatory on a clear day without clouds (July 13, 2017) was 7.11 Wm−2 in comparison to the reference pyranometer. After the outdoor calibration of the pyranometer sensitivity based on these results, the RMSE of the observational data was 1.74 Wm−2 on the same day. Periodic inspections are required because the decrease of sensitivity over time is inevitable in the pyranometer data produced at the observatory. The initial sensitivity after indoor calibration (8.98 μV·(Wm−2)−1) is important, and the sensitivity after outdoor calibration (8.90 μV·(Wm−2)−1) can be compared to the data at the Baseline Surface Radiation Network (BSRN) or can be used for various studies and daily applications.

Keywords

Solar radiation Pyranometer Sensitivity Indoor∙outdoor calibration Integrating sphere 

Notes

Acknowledgements

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2014-21080.

This study was supported by Gangneung-Wonju National University.

References

  1. Agugiaro, G., Nex, F., Remondino, F., De Filippi, R., Droghetti, S., Furlanello, C.: Solar radiation estimation on building roofs and web-based solar cadastre. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 177–182 (2012)CrossRefGoogle Scholar
  2. Aradóttir, Á.L., Thorgeirsson, H., McCaughey, J.H., Strachan, I.B., Robertson, A.: Establishment of a black cottonwood plantation on an exposed site in Iceland: plant growth and site energy balance. Agric. For. Meteorol. 84(1), 1–9 (1997)CrossRefGoogle Scholar
  3. Beaubien, D.J., Bisberg, A., Beaubien, A.F.: Investigations in pyranometer design. J. Atmos. Ocean. Technol. 15(3), 677–686 (1998)CrossRefGoogle Scholar
  4. Black, K., Davis, P., Lynch, P., Jones, M., McGettigan, M., Osborne, B.: Long-term trends in solar irradiance in Ireland and their potential effects on gross primary productivity. Agric. For. Meteorol. 141(2), 118–132 (2006)CrossRefGoogle Scholar
  5. Bush, B.C., Valero, F.P., Simpson, A.S., Bignone, L.: Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation. J. Atmos. Ocean. Technol. 17(2), 165–175 (2000)CrossRefGoogle Scholar
  6. Campbell Scientific: EPPLEY PSP: Precision spectral pyranometer instruction manual. [Available online at http://s.campbellsci.com/documents/au/manuals/psp.pdf] (1992). Accessed March 2017
  7. Cohen, P., Potchter, O., Matzarakis, A.: Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build. Environ. 51, 285–295 (2012)CrossRefGoogle Scholar
  8. Dutton, E.G., Michalsky, J.J., Stoffel, T., Forgan, B.W., Hickey, J., Nelson, D.W., Alberta, T.L., Reda, I.: Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J. Atmos. Ocean. Technol. 18(3), 297–314 (2001)CrossRefGoogle Scholar
  9. Garcia y Garcia, A., Guerra, L.C., Hoogenboom, G.: Impact of generated solar radiation on simulated crop growth and yield. Ecol. Model. 210(3), 312–326 (2008)CrossRefGoogle Scholar
  10. Gatebe, C.K., Butler, J.J., Cooper, J.W., Kowalewski, M., King, M.D.: Characterization of errors in the use of integrating-sphere systems in the calibration of scanning radiometers. Appl. Opt. 46(31), 7640–7651 (2007)CrossRefGoogle Scholar
  11. Heimo, A., Vernez, A., Wasserfallen, P.: Baseline Surface Radiation Network (BSRN). Concept and Implementation of a BSRN Station, WMO/TD-No. 579, WCRP/WMO, 17 pp. (1993)Google Scholar
  12. Hukseflux: User manual SR25. [Available online at http://www.hukseflux.com/sites/default/files/product_manual/SR25_manual_v1609.pdf] (2015) Accessed March 2017
  13. ISO 9060:1990(E): Solar energy - specification and classification of instruments for measuring hemispherical solar and direct solar radiation. Instrumental standard ISO 9060. International Organisation for Standardization (ISO), Geneva, Switzerland (1990)Google Scholar
  14. Ji, Q.: A method to correct the thermal dome effect of pyranometers in selected historical solar irradiance measurements. J. Atmos. Ocean. Technol. 24(3), 529–536 (2007)CrossRefGoogle Scholar
  15. Ji, Q., Tsay, S.C.: A novel nonintrusive method to resolve the thermal dome effect of pyranometers: instrumentation and observational basis. J. Geophys. Res. Atmos. 115(D7), D00K21 (2010).  https://doi.org/10.1029/2009JD013483
  16. Ji, Q., Tsay, S.C., Lau, K.M., Hansell, R.A., Butler, J.J., Cooper, J.W.: A novel nonintrusive method to resolve the thermal dome effect of pyranometers: radiometric calibration and implications. J. Geophys. Res. Atmos. 116(D24), D24105 (2011).  https://doi.org/10.1029/2011JD016466 CrossRefGoogle Scholar
  17. Kipp&Zonen: Instruction manual: CMP series. [Available online at http://www.kippzonen.com/Download/72/Manual-Pyranometers-CMP-series-English] (2016) Accessed March 2017
  18. KMA: Guidance of surface meteorological observation. Korea Meteorological Administration, 151 pp. (in Korean) (2002)Google Scholar
  19. Kuhn, M.: Principles of calibration of thermal radiometers il-lustrated by the performance of 12 instruments in Antarctic fieldwork. In: Proceedings Symposium on Solar Radiation—Measurements and Instrumentation, Smithsonian Institute Radiation Biology Laboratory, Smithsonian Institute, pp. 217–268 (1973)Google Scholar
  20. Labsphere: Detector assemblies. [Available online at https://www.labsphere.com/site/assets/files/2678/detectorassemblies.pdf] (2015a) Assessed March 2017
  21. Labsphere: SC 6000 system controller. [Available online at https://www.labsphere.com/site/assets/files/2919/sc_6000_system_controller.pdf] (2015b) Assessed March 2017
  22. Labsphere: Spectraflect 97% diffuse reflectance coating. [Available online at https://www.labsphere.com/site/assets/files/1831/spectraflect.pdf] (2015c) Assessed March 2017
  23. Loutzenhiser, P.G., Manz, H., Felsmann, C., Strachan, P.A., Frank, T., Maxwell, G.M.: Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Sol. Energy. 81(2), 254–267 (2007)CrossRefGoogle Scholar
  24. McArthur, L. J. B.: World Climate Research Programme-Baseline Surface Radiation Network (BSRN) Operations Manual (version 2.1). WMO/TD-No. 1274, World Climate Research Programme, WMO, pp. 176 (2005)Google Scholar
  25. McCahill, P.W., Noste, E.E., Rossman, A.J., Callaway, D.W.: Integration of energy analytics and smart energy microgrid into mobile medicine operations for the 2012 Democratic National Convention. Prehosp. Disaster Med. 29(6), 600–607 (2014)Google Scholar
  26. Meister, G., Abel, P., Barnes, R., Cooper, J., Davis, C., Godin, M., Goebel, D., Fargion, G., Frouin, R., Korwan, D., Maffione, R., McClain, C., McLean, S., Menzies, D., Poteau, A., Robertson, J., Sherman, J.: The first SIMBIOS radiometric intercomparison (SIMRIC-1), april-september 2001. NASA Technical Memorandum. 2002–210006. NASA Goddard Space Flight Center, Greenbelt, MD, pp. 60 (2002)Google Scholar
  27. Pissulla, D., Seckmeyer, G., Cordero, R.R., Blumthaler, M., Schallhart, B., Webb, A., Kift, R., Smedley, A., Bais, A.F., Kouremeti, N., Cede, A., Herman, J., Kowalewski, M.: Comparison of atmospheric spectral radiance measurement from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516–527 (2009)CrossRefGoogle Scholar
  28. Reda, I., Hickey, J., Long, C., Myers, D., Stoffel, T., Wilcox, S., Michalsky, J.J., Dutton, E.G., Nelson, D.: Using a blackbody to calculate net longwave responsivity of shortwave solar pyranometers to correct for their thermal offset error during outdoor calibration using the component sum method. J. Atmos. Ocean. Technol. 22(10), 1531–1540 (2005)CrossRefGoogle Scholar
  29. Reda, I., Dooraghi, M., Andreas, A., Habte, A.: NREL Pyrheliometer Comparisons: September 26-October 7, 2016 (NPC-2016). NREL/TP-3B10-67311. Golden, CO: National Renewable Energy Laboratory, pp. 62 (2016)Google Scholar
  30. Romero, J.: Direct Solar Irradiance Measurements with Pyrheliometers: Instruments and Calibrations. IPC-VIII, Davos, Switzerland, pp. 16 (1995)Google Scholar
  31. Rosa, E.B., Taylor, A.H.: Theory, construction, and use of the photometric integrating sphere. J. Franklin Inst. 195(1), 107–109 (1923)CrossRefGoogle Scholar
  32. Sanchez, G., Serrano, A., Cancillo, M.L., Garcia, J.A.: Pyranometer thermal offset: measurement and analysis. J. Atmos. Ocean. Technol. 32(2), 234–246 (2015)CrossRefGoogle Scholar
  33. Sanchez, G., Serrano, A., Cancillo, M.L.: Effect of mechanical ventilation on the thermal offset of Pyranometers during cloud-free summer conditions. J. Atmos. Ocean. Technol. 34(5), 1155–1173 (2017)CrossRefGoogle Scholar
  34. Stanhill, G., Cohen, S.: Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 107(4), 255–278 (2001)CrossRefGoogle Scholar
  35. Stathopoulos, T., Wu, H., Zacharias, J.: Outdoor human comfort in an urban climate. Build. Environ. 39(3), 297–305 (2004)CrossRefGoogle Scholar
  36. Uguccini, O. W.: An integrating sphere spectroradiometer for solar simulator measurements. NASA TN D-4822, pp. 29 (1968)Google Scholar
  37. Ulbricht, R.: Die Bestimmung der mittleren räumlichen Lichtintensität durch nur eine Messung. Elekt. Zeit. 29, 595–597 (1900)Google Scholar
  38. Vane, G., Chrien, T.G., Reimer, J.H., Green, R.O., Conel, J.E.: Comparison of laboratory calibrations of the airborne visible/infrared imaging spectrometer (AVIRIS) at the beginning and end of the first flight season. SPIE Proc. 924, 168–178 (1988)Google Scholar
  39. WMO: Third WMO regional Pyrheliometer comparison of RA II. Instruments and Observing Methods Report No. 113, pp. 46 (2012)Google Scholar
  40. WMO: International Pyrheliometer Comparison IPC-XII, 28.9–16.10.2015. WMO Instruments Observing Methods Report No. 124, Davos, Switzerland, pp. 105 (2016)Google Scholar
  41. Wu, H., He, Y., Zheng, C., Feng, G., Chen, C., Dong, W., Li, P., Wang, Y.: Design and characterization of a large aperture spectral radiance source integrating sphere for calibration of satellite remote sensors. 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 9282, 928226 1–7 (2014)Google Scholar
  42. Yang, X., Asseng, S., Wong, M.T.F., Yu, Q., Li, J., Liu, E.: Quantifying the interactive impacts of global dimming and warming on wheat yield and water use in China. Agric. For. Meteorol. 182, 342–351 (2013)CrossRefGoogle Scholar
  43. Zhao, W.N., Fang, W., Sun, L.W., Cui, L.H., Wang, Y.P.: Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis. Chinese Phys. B. 25(9), 090701 (2016)CrossRefGoogle Scholar
  44. Zo, I.S., Jee, J.B., Lee, K.T., Kim, B.Y.: Radiometer measurement Intercomparison using absolute cavity radiometer in regional radiometer Center at Tsukuba, Japan. New. Renew. Ener. 12(4), 5–13 (2016) (in Korean with English abstract)CrossRefGoogle Scholar
  45. Zo, I.S., Jee, J.B., Kim, B.Y., Lee, K.T.: Baseline surface radiation network (BSRN) quality control of solar radiation data on the Gangneung-Wonju National University radiation station. Asia-Pac. J. Atmos. Sci. 53(1), 11–19 (2017)CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Atmospheric and Environmental SciencesGangneung-Wonju National UniversityGangneungSouth Korea
  2. 2.Research Institute for Radiation-SatelliteGangneung-Wonju National UniversityGangneungSouth Korea

Personalised recommendations