Advertisement

Development of an Observation Processing Package for Data Assimilation in KIAPS

  • Jeon-Ho Kang
  • Hyoung-Wook Chun
  • Sihye Lee
  • Ji-Hyun Ha
  • Hyo-Jong Song
  • In-Hyuk Kwon
  • Hyun-Jun Han
  • Hanbyeol Jeong
  • Hui-Nae Kwon
  • Tae-Hun Kim
Article

Abstract

A new observation processing system, the Korea Institute of Atmospheric Prediction Systems (KIAPS) Package for Observation Processing (KPOP), has been developed to provide optimal observation datasets to the data assimilation (DA) system for the Korean Integrated Model, KIM. This paper presents the KPOP’s conceptual design, how the principal modules have been developed, and some of their preliminary results. Currently, the KPOP is capable of processing almost all observation types used by the Korea Meteorological Administration (KMA) and some new observation types that have a positive impact in other operational centers. We have developed an adaptive bias correction (BC) method that only uses the background of the analysis time and selects the best observations through the consecutive iteration of BC and quality control (QC); it has been verified that this method will be the best suited for the KIAPS DA system until the development of variational BC (VarBC) has been completed. The requirement of considering the radiosonde balloon drift in the DA according to the increase of spatial resolution of the NWP model was accounted for using a balloon drift estimation method that considers the pressure difference and wind speed; thus the distance error was less than 1% in the sample test. Some kind of widely used methods were tested for height adjustment of the SURFACE observation, and a new method for temperature adjustment was outlined that used the correlation between temperature and relative humidity. In addition, three types of map projection were compared: the cubed-sphere (CS), equidistance (ED), and equirectangular (ER) projection for thinning. Data denial experiments were conducted to investigate how the KPOP affected the quality of the analysis fields in the three-dimensional variational data assimilation system (3D-Var). Qualified observations produced by the KPOP had a positive impact by reducing the analysis error.

Key words

KPOP observation processing bias correction quality control data assimilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auligné, T., and A. P. McNally, 2007: Interaction between bias correction and quality control. Quart. J. Roy. Meteor. Soc. 133, 643-653.CrossRefGoogle Scholar
  2. Auligné, T., and A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc. 133, 631-642.CrossRefGoogle Scholar
  3. Baker, N. L., 1992: Quality control for the navy operational atmospheric database. Wea. Forecasting, 7, 250-261.CrossRefGoogle Scholar
  4. Bédard, J., S. Laroche, and P. Gauthier, 2015: A geo-statistical observation operator for the assimilation of near-surface wind data. Quart. J. Roy. Meteor. Soc., 141, 2857-2868, doi:10.1002/qj.2569.CrossRefGoogle Scholar
  5. Bormann, N., K. Salonen, C. Peubey, T. McNally, and C. Lupu, 2012: An overview of the status of the operational assimilation of AMVs at ECMWF. Proc. the 11th International Wind Workshop, Auckland, New Zealand, ECMWF, 20-24.Google Scholar
  6. Cameron, J., and W. Bell, 2016: The testing and planned implementation of variational bias correction (VarBC) at the Met Office. Proc. the 20th International TOVS Study Conferences, Wisconsin, USA, ITWG, 139-140.Google Scholar
  7. Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamic core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci. 52, 291-307, doi:10.1007/s13143-016-0005-0.CrossRefGoogle Scholar
  8. Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.CrossRefGoogle Scholar
  9. Culverwell, I. D., H. W. Lewis, D. Offiler, C. Marquardt, and C. P. Burrows, 2015: The Radio Occultation Processing Package, ROPP. Atmos. Meas. Tech., 8, 1887-1899, doi:10.5194/amt-8-1887-2015.CrossRefGoogle Scholar
  10. Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc. 131, 3323-3343.CrossRefGoogle Scholar
  11. Dennis, J., A. Fournier, W. F. Spotz, A. St-Cyr, M. A. Taylor, S. J. Thomas, and H. Tufo, 2005: High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perform. Comput. Appl., 19, 225-235, doi:10.1177/1094-342005056108.CrossRefGoogle Scholar
  12. Derber, J. C., D. F. Parrish, and S. J. Lord, 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6, 538-547.CrossRefGoogle Scholar
  13. Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev. 126, 2287-2299.CrossRefGoogle Scholar
  14. Eyre, J. R., 1992: A bias correction scheme for simulated TOVS brightness temperatures. ECMWF Tech. Memo. No. 186, 35 pp.Google Scholar
  15. Geer, A. J., and Coauthors, 2018: Allsky satellite data assimilation at operational weather forecasting centres (in press). Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.3202.Google Scholar
  16. Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc. 127, 1453-1468.CrossRefGoogle Scholar
  17. Hollingsworth, A., D. B. Shaw, P. Lönnberg, L. Illari, K. Arpe, and A. J. Simmons, 1986: Monitoring of Observation and Analysis Quality by a Data Assimilation System. Mon. Wea. Rev., 114, 861-879.CrossRefGoogle Scholar
  18. Hong, S-Y, and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.Google Scholar
  19. Howard, T. and P. Clark, 2003: Improvement to the Nimrod wind nowcasting scheme over high ground. Forecasting Research Technical Report No. 406, 31 pp.Google Scholar
  20. Järvinen, H., and P. Undén, 1997: Observation screening and background quality control in the ECMWF 3DVar data assimilation system. ECMWF Tech. Memo. No. 236, 33 pp.Google Scholar
  21. Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univ. Press, 341 pp.Google Scholar
  22. Kang, J.-H., H.-J. Song, J.-H. Ha, and H.-J. Han, 2016: A study on the relationship among surface variables to adjust the height of surface temperature for data assimilation. Proc. the American Geophysical Union Fall meeting 2016, San Francisco, USA,. AGU.Google Scholar
  23. Kelly, G., J. N. Thépaut, R. Buizza, and C. Cardinali, 2007: The value of observations. I: Data denial experiments for the Atlantic and the Pacific. Quart. J. Roy. Meteor. Soc. 133, 1803-1815.Google Scholar
  24. Kwon, H. J.-S. Kang, Y. Jo, and J.-H. Kang, 2015: Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system. Atmos. Meas. Tech. 8, 1259-1273, doi:10.5194/amt-8-1259-2015.CrossRefGoogle Scholar
  25. Laroche, S., and R. Sarrazin, 2013: Impact of radiosonde balloon drift on numerical weather prediction and verification. Wea. Forecasting, 28, 772-782, doi:10.1175/WAF-D-12-00114.1.CrossRefGoogle Scholar
  26. Lee, S., S. Kim, H.-W. Chun, J.-H. Kim, and J.-H. Kang, 2014: Preprocessing and bias correction for AMSUA radiance data based on statistical methods. Atmosphere, 24, 491-502, doi:10.14191/Atmos. 2014.24.4.491 (in Korean with English abstract).CrossRefGoogle Scholar
  27. Lorenc, A. C., and O. Hammon, 1988: Objective quality control of observations using Bayesian methods. Theory, and a practical implementation. Quart. J. Roy. Meteor. Soc., 114, 515-543.CrossRefGoogle Scholar
  28. McNally, A. P., and P. D. Watts, 2003: A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 3411-3423.CrossRefGoogle Scholar
  29. Ochotta, T., C. Gebhardt, D. Saupe, and W. Wergen, 2005: Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. Quart. J. Roy. Meteor. Soc. 131, 3427-3437.CrossRefGoogle Scholar
  30. Rabier, F., 2011: Pre-and Post-Processing in Data Assimilation. Preprints, Seminar on Data assimilation for atmosphere and ocean, Reading, UK, ECMWF, 45-59.Google Scholar
  31. Saunders, R. W., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc. 125, 1407-1425.CrossRefGoogle Scholar
  32. Seidel, D. J., B. Sun, M. Pettey, and A. Reale, 2011: Global radiosonde balloon drift statistics. J. Geophys. Res., 116, D07102, doi:10.1029/2010JD014891.CrossRefGoogle Scholar
  33. Song, H.-J., and I.-H. Kwon, 2015: Spectral transformation using a cubedsphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev. 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.CrossRefGoogle Scholar
  34. Song, H.-J., and I.-H. Kwon, and J. Kim, 2017a: Characteristics of a spectral inverse of the Laplacian using spherical harmonic functions on a cubed-sphere grid for background error covariance modeling, Mon. Wea. Rev., 145, 307-322, doi:10.1175/MWR-D-16-0134.1.CrossRefGoogle Scholar
  35. Song, H.-J., J. Kwun, I.-H. Kwon, J.-H. Ha, J.-H. Kang, S. Lee, H.-W. Chun, and S. Lim, 2017b: The impact of the nonlinear balance equation on a 3D-Var cycle during an Australian-winter month as compared with the regressed wind-mass balance, Quart. J. Roy. Meteor. Soc. 143, 2036-2049, doi:10.1002/qj.3036.CrossRefGoogle Scholar
  36. Song, H.-J., S. Shin, J.-H. Ha, and S. Lim S, 2017c: The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions. J. Geophys. Res. 122, 12,226-12,244, doi:10.1002/2017JD027598.Google Scholar
  37. Song, H.-J., J.-H. Ha, I.-H. Kwon, J. Kim, and J. Kwun, 2018: Multiresolution hybrid data assimilation core on a cubed-sphere grid (HybDA) (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0018-y.Google Scholar
  38. Tenenbaum, J., 1996: Jet Stream Winds: Comparisons of aircraft observations with analysis. Wea. Forecasting, 11, 188-197.CrossRefGoogle Scholar
  39. Verspeek, J., A. Stoffelen, M. Portabella, H. Bonekamp, C. Anderson, and J. Figa-Saldana, 2010: Validation and calibration of ASCAT using CMOD5.n. IEEE Trans. Geosci. Remote Sens., 48, 386-395, doi: 10.1109/TGRS.2009.2027896.CrossRefGoogle Scholar
  40. Warrick, F., 2015: Options for filling the LEO-GEO AMV Coverage Gap. NWP SAF Tech. Doc., NWP SAF-MO-TR-030, 21 pp.Google Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Jeon-Ho Kang
    • 1
    • 2
  • Hyoung-Wook Chun
    • 1
  • Sihye Lee
    • 1
  • Ji-Hyun Ha
    • 1
  • Hyo-Jong Song
    • 1
  • In-Hyuk Kwon
    • 1
  • Hyun-Jun Han
    • 1
  • Hanbyeol Jeong
    • 1
  • Hui-Nae Kwon
    • 1
  • Tae-Hun Kim
    • 1
  1. 1.Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea
  2. 2.Data Assimilation Team, Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea

Personalised recommendations