Advertisement

Real Data Assimilation Using the Local Ensemble Transform Kalman Filter (LETKF) System for a Global Non-hydrostatic NWP model on the Cubed-sphere

  • Seoleun Shin
  • Jeon-Ho Kang
  • Hyoung-Wook Chun
  • Sihye Lee
  • Kwangjae Sung
  • Kyoungmi Cho
  • Youngsoon Jo
  • Jung-Eun Kim
  • In-Hyuk Kwon
  • Sujeong Lim
  • Ji-Sun Kang
Article
  • 11 Downloads

Abstract

An ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter is implemented to a global non-hydrostatic Numerical Weather Prediction model on the cubed-sphere. The ensemble data assimilation system is coupled to the Korea Institute of Atmospheric Prediction Systems Package for Observation Processing, for real observation data from diverse resources, including satellites. For computational efficiency in a parallel computing environment, we employ some advanced software engineering techniques in the handling of a large number of files. The ensemble data assimilation system is tested in a semi-operational mode, and its performance is verified using the Integrated Forecast System analysis from the European Centre for Medium-Range Weather Forecasts. It is found that the system can be stabilized effectively by additive inflation to account for sampling errors, especially when radiance satellite data are additionally used.

Key words

Ensemble data assimilation local ensemble transform Kalman filter (LETKF) numerical weather prediction (NWP) atmospheric global model (AGM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. L., 2008: Spatially and temporally varying adaptive co-variance inflation for ensemble filters. Tellus, 61, 72-83.CrossRefGoogle Scholar
  2. Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758CrossRefGoogle Scholar
  3. Aravequia, J. A., I. Szunyogh, E. J. Fertig, E. Kalnay, D. Kuhl, and E. J. Kostelich, 2011: Evaluation of a strategy for the assimilation of satellite radiance observations with the Local Ensemble Transform Kalman Filter. Mon. Wea. Rev., 139, 1932-1951, doi:10.1175/2010MWR3515.1.CrossRefGoogle Scholar
  4. Bormann, N., A. Collard, and P. Bauer, 2010: Estimates of spatial and inter-channel observation error characteristics for current sounder radiances for NWP, part II: Application to AIRS and IASI. Quart. J. Roy. Meteor. Soc., 136, 1051-1063, doi:10.1002/qj.615.CrossRefGoogle Scholar
  5. Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. McNally, 2016: Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Quart. J. Roy. Meteor. Soc., 142, 1767-1780, doi:10.1002/qj.2774.CrossRefGoogle Scholar
  6. Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlin. Processes Geophys., 20, 669-682, doi:10.5194/npg-20-669-2013.CrossRefGoogle Scholar
  7. Choi. S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.CrossRefGoogle Scholar
  8. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162.CrossRefGoogle Scholar
  9. Fertig, E. J., B. R. Hunt, E. Ott, and I. Szunyogh, 2007: Assimilating nonlocal observations with a local ensemble Kalman filter. Tellus, 59, 719-730.CrossRefGoogle Scholar
  10. Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757.CrossRefGoogle Scholar
  11. Grody, N., F. Weng, and R. Ferraro, 1999: Application of AMSU for obtaining water vapor, cloud liquid water, precipitation, snow cover and sea ice concentration. Proc. the Tenth International ATOVS Study Conference, Colorado, USA, BMRC, 230-240.Google Scholar
  12. Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res., 106, 2943-2953.CrossRefGoogle Scholar
  13. Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453-1468.CrossRefGoogle Scholar
  14. Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Ofce and assessment of its impact through observing system experiments. Quart. J. Roy. Meteor. Soc., 135, 495-505.CrossRefGoogle Scholar
  15. Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.Google Scholar
  16. Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.CrossRefGoogle Scholar
  17. Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 3269-3289.CrossRefGoogle Scholar
  18. Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 4489-4532, doi: 10.1175/MWR-D-15-0440.1.CrossRefGoogle Scholar
  19. Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations. Mon. Wea. Rev., 133, 604-620.CrossRefGoogle Scholar
  20. Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D., 230, 112-126.CrossRefGoogle Scholar
  21. Kang, J.-S., E. Kalnay, T. Miyoshi, J. Liu, and I. Fung, 2012: Estimation of surface carbon fluxes with an advanced data assimilation methodology. J. Geophys. Res., 117, D24101.CrossRefGoogle Scholar
  22. Kang, J.-H., H.-W. Chun, S. Lee, H.-J. Song, J.-H. Ha, I.-H. Kwon, H.-J. Han, H. Jeong, and H.-N. Kwon, 2018: Development of an observation processing package for data assimilation in KIAPS. Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0030-2.Google Scholar
  23. Kleist, D. T. and K. Ide, 2015: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433-451, doi:10.1175/MWR-D-13-00351.1.Google Scholar
  24. Kotsuki, S, Y. Ota, and T. Miyoshi, 2017: Adaptive covariance relaxation methods for ensemble data assimilation: experiments in the real atmosphere. Quart. J. Roy. Meteor. Soc., 143, 2001-2015, doi:10.1002/qj.3060.CrossRefGoogle Scholar
  25. Kwon, H., J.-S. Kang, Y. Jo, and J. H. Kang, 2015: Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system. Atmos. Meas. Tech., 8, 1259-1273, doi:10.5194/amt-8-1259-2015.CrossRefGoogle Scholar
  26. Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212-229, doi: 10.1175/MWR-D-14-00195.1.CrossRefGoogle Scholar
  27. McNally, A. P., and P. D. Watts, 2003: A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 3411-3423.CrossRefGoogle Scholar
  28. Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519-1535, doi:10.1175/2010MWR3570.1.CrossRefGoogle Scholar
  29. Miyoshi, T., and Y. Sato, 2007: Assimilating satellite radiances with a Local Ensemble Transform Kalman Filter (LETKF) applied to the JMA global model (GSM). Sci. Online Lett. Atmos., 3, 37-40.Google Scholar
  30. Miyoshi, T., S. Yamane, and T. Enomoto, 2007: Localizing the error covariance by physical distances within a Local Ensemble Transform Kalman Filter (LETKF). Sci. Online Lett. Atmos., 3, 89-92.Google Scholar
  31. Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136-144.CrossRefGoogle Scholar
  32. Salonen, K., J. Cotton, N. Bormann, and M. Forsythe, 2015: Characterizing AMV height-assignment error by comparing best-fit pressure statistics from the Met Office and ECMWF data assimilation systems. J. Appl. Meteor. Climatol., 54, 225-242, doi:10.1175/JAMC-D-14-0025.1.CrossRefGoogle Scholar
  33. Shin, S., J.-S. Kang, and Y. Jo, 2016: The Local Ensemble Transform Kalman Filter (LETKF) with a Global NWP Model on the Cubed Sphere. Pure Appl. Geophys., 173, 2555-2570, doi:10.1007/s00024-016-1269-0.CrossRefGoogle Scholar
  34. Smith, A., N. Atkinson, W. Bell, and A. Doherty, 2015: An initial assessment of observations from the Suomi-NPP satellite: data from the Cross-track Infrared Sounder (CrIS). Atmos. Sci. Lett., 16, 260-266, doi:10.1002/asl2.551.CrossRefGoogle Scholar
  35. Song, H.-J., S. Shin, J.-H. Ha, and S. Lim, 2017: The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions. J. Geophys. Res., 122, 12226-12244, doi:10.1002/2017JD027598.Google Scholar
  36. Thépaut, J.-N., 2003: Satellite data assimilation in numerical weather prediction: An overview. Proc. the Annual Seminar on Recent Development in Data Assimilation for Atmosphere and Ocean, Reading, UK, ECMWF, 75-94.Google Scholar
  37. Weston, P., W. Bell, and J. Eyre, 2014: Accounting for correlated error in the assimilation of high resolution sounder data. Quart. J. Roy. Meteor. Soc., 140, 2420-2429, doi:10.1002/qj.2306.CrossRefGoogle Scholar
  38. Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078-3089, doi:10.1175/MWR-D-11-00276.1.CrossRefGoogle Scholar
  39. Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463-481.CrossRefGoogle Scholar
  40. Yamazaki, A., T. Enomoto, T. Miyoshi, A. Kuwano-Yoshida, and N. Komori, 2017: Using Observations near the poles in the AFES-LETKF data assimilation system. Sci. Online Lett. Atmos., 13, 41-46, doi:10. 2151/sola.2017-008.Google Scholar
  41. Yang, S.-C., E. Kalnay, and T. Enomoto, 2015: Ensemble singular vectors and their use as additive inflation in ENKF. Tellus A, 67, 26536, doi:10.3402/tellusa.v67.26536.CrossRefGoogle Scholar
  42. Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238-1253.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Seoleun Shin
    • 1
    • 3
  • Jeon-Ho Kang
    • 1
  • Hyoung-Wook Chun
    • 1
  • Sihye Lee
    • 1
  • Kwangjae Sung
    • 1
  • Kyoungmi Cho
    • 1
  • Youngsoon Jo
    • 1
  • Jung-Eun Kim
    • 1
  • In-Hyuk Kwon
    • 1
  • Sujeong Lim
    • 1
  • Ji-Sun Kang
    • 2
  1. 1.Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea
  2. 2.Korea Institute of Science and Technology Information (KISTI)DaejeonKorea
  3. 3.Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea

Personalised recommendations