Advertisement

Impacts of Shallow Convection Processes on a Simulated Boreal Summer Climatology in a Global Atmospheric Model

Article

Abstract

This study investigates the impacts of shallow convection schemes on a simulated seasonal climatology in the Global and Regional Integrated Model system (GRIMs). The eddy-diffusivity scheme of Tiedtke (TDK) is evaluated, focusing on the dependency upon deep convection schemes. Drying and warming near the top of the planetary boundary layer (PBL) and opposing effects above are observed. The height of PBL is reduced due to the increase of thermal stability near the PBL top. The weakened PBL turbulence is partly compensated with the increased downward solar radiation due to the reduction of low clouds. These effects are pronounced over the oceans, which leads to the modulation of tropical precipitation. It is found that the original TDK scheme shows similar behavior regardless of the choice of deep convection schemes. A revised TDK scheme that explicitly couples the PBL and shallow convection processes is proposed and evaluated. The proposed scheme generally improves the simulated climatology over the results with the original TDK scheme, along with further improvement in the case of the revised deep convection scheme. Our results indicate that the role of the shallow convection scheme needs to be carefully examined to improve the performance of atmospheric models, with a focus on modulated PBL and deep convection processes.

Key words

Shallow convection deep convection seasonal forecasts general circulation model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-691.Google Scholar
  2. Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. A. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 9655-9676, doi:10.1175/JCLI-D-13-00075.1.CrossRefGoogle Scholar
  3. Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22, 3422-3448.CrossRefGoogle Scholar
  4. Byun, Y. H., and S.-Y. Hong, 2004: Impact of boundary-layer processes on simulated tropical rainfall. J. Climate, 17, 4032-4044.CrossRefGoogle Scholar
  5. Gordon, C. T., A. Rosati, and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13, 2239-2260.CrossRefGoogle Scholar
  6. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787.CrossRefGoogle Scholar
  7. Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520-533, doi:10.1175/WAF-D-10-05038.1.CrossRefGoogle Scholar
  8. Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth's energy balance: Global analysis. J. Climate, 5, 1281-1304.CrossRefGoogle Scholar
  9. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.CrossRefGoogle Scholar
  10. Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.CrossRefGoogle Scholar
  11. Iacobellis, S. F., and R. C. J. Somerville, 2000: Implications of microphysics for cloud-radiation parameterizations: Lessons from TOGA COARE. J. Atmos. Sci., 57, 161-183.CrossRefGoogle Scholar
  12. Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131, 2765-2778.CrossRefGoogle Scholar
  13. Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397-2418.CrossRefGoogle Scholar
  14. Juang, H.-M. H., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122, 3-26.CrossRefGoogle Scholar
  15. Juang, H.-M, S.-Y. Hong, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78, 2125-2143.CrossRefGoogle Scholar
  16. Kanamitsu, M., and Coauthors, 2002a: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 1019-1037.CrossRefGoogle Scholar
  17. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002b: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643.CrossRefGoogle Scholar
  18. Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587-1606.CrossRefGoogle Scholar
  19. Li, H., M. Kanamitsu, and S.-Y. Hong, 2012: California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system. J. Geophys. Res., 117, D12118, doi:10.1029/2011JD-017372.Google Scholar
  20. Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical pacific circulation: a coupled ocean-atmosphere GCM study. J. Climate, 9, 1635-1645.CrossRefGoogle Scholar
  21. Norris, J. R., 1999: On trends and possible artifacts in global ocean cloud cover between 1952 and 1995. J. Climate, 12, 1864-1870.CrossRefGoogle Scholar
  22. Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 43 pp.Google Scholar
  23. Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Japan, 85, 151-168.CrossRefGoogle Scholar
  24. Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261-2287.CrossRefGoogle Scholar
  25. Stensrud, D. J., 2007: Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, 459 pp.CrossRefGoogle Scholar
  26. Slingo, J., M. Blackburn, A. Betts, R. Brugge, K. Hodges, B. Hoskins, M. Miller, L. Steenman-Clark, and J. Thuburn, 1994: Mean climate and transience in the tropics of the UGAMP GCM: Sensitivity to convective parametrization. Quart. J. Roy. Meteor. Soc., 120, 881-922.CrossRefGoogle Scholar
  27. Tiedtke, M., W. A. Heckley, and J. Slingo, 1988: Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Quart. J. Roy. Meteor. Soc., 114, 639-664.CrossRefGoogle Scholar
  28. Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What Controls the Transition from Shallow to Deep Convection? J. Atmos. Sci., 66, 1793-1806.CrossRefGoogle Scholar
  29. Xie, P., and P. A. Arkin, 1997: Global Precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.CrossRefGoogle Scholar
  30. Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM southern great plains site. J. Atmos. Sci., 67, 2943-2959, doi:10.1175/2010JAS3366.1.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea
  2. 2.National Center for Atmospheric Research/Mesoscale Microscale Meteorology DivisionBoulderUSA
  3. 3.Korea Institute of Atmospheric Prediction Systems (KIAPS) 4FSeoulKorea

Personalised recommendations