Chemical Characteristics of Size-Resolved Aerosols in Coastal Areas during KORUS-AQ Campaign; Comparison of Ion Neutralization Model

  • Min-Suk BaeEmail author
  • Taehyoung Lee
  • James J. Schauer
  • Gyutae Park
  • Young-Baek Son
  • Ki-Hyun Kim
  • Seung-Sik Cho
  • Seung Shik Park
  • Kihong Park
  • Zang-Ho Shon
Original Article


Measurements for size-resolved chemical composition were made at the Anmyeon Island station on the western coast of the Republic of Korea between May 28 and June 20, 2016. This study determined the main chemical compositions of size-resolved particulate matter (i.e., organic carbon, elemental carbon, water-soluble organic carbon, water-soluble ions, and benzene carboxylic acids) from a total of eight chemically size-resolved sets using micro-orifice uniform deposit impactors. The sum of the species presents a prominent accumulation mode peak at a diameter of 0.56 μm without the coarse mode peak. In the accumulation mode, SO42− (49.3%) was the dominant particle component in the size range of 0.1–1.8 μm. Organic carbon and elemental carbon accounted for 13.5% and 0.4%, respectively. Benzene carboxylic acids indicate the accumulation mode peak at the diameter of 0.56 μm. The size-resolved equivalent ion concentration ratios between all measured cations and anions and the ion neutralization model, which uses four major ions, were compared. As a result, the concentration of Na+ is of importance in the accumulation mode for the equivalent ion concentration.


MOUDI OPS Benzene carboxylic acid WSOC OC 



We acknowledge the support provided by the National Research Foundation of Korea (NRF) (NRF-2018R1A2A1A05077650 & 2017M3D8A1092222).

Supplementary material

13143_2018_99_MOESM1_ESM.docx (5.5 mb)
ESM 1 (DOCX 5662 kb)


  1. Al-Naiema, I.M., Stone, E.A.: Evaluation of anthropogenic secondary organic aerosol tracers from aromatic hydrocarbons. Atmos. Chem. Phys. 17, 2053–2065 (2017)CrossRefGoogle Scholar
  2. Bae, M.S., Park, S.-S.: Thermal distribution of size-resolved carbonaceous aerosols and water soluble organic carbon in emissions from biomass burning. Asian J. Atmos. Environ. 7, 95–104 (2013)CrossRefGoogle Scholar
  3. Bae, M.S., Schauer, J.J., DeMinter, J.T., Turner, J.R.: Hourly and daily patterns of particle-phase organic and elemental carbon concentrations in the urban atmosphere. J. Air Waste Manage. Assoc. 54, 823–833 (2004a)CrossRefGoogle Scholar
  4. Bae, M.S., Schauer, J.J., DeMinter, J.T., Turner, J.R., Smith, D., Cary, R.A.: Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method. Atmos. Environ. 38, 2885–2893 (2004b)CrossRefGoogle Scholar
  5. Bae, M.S., Demerjian, K.L., Schwab, J.J.: Seasonal estimation of organic mass to organic carbon in PM2.5 at rural and urban locations in New York state. Atmos. Environ. 40, 7467–7479 (2006)CrossRefGoogle Scholar
  6. Bae, M.S., Shin, J.S., Lee, K.Y., Lee, K.H., Kim, Y.J.: Long-range transport of biomass burning emissions based on organic molecular markers and carbonaceous thermal distribution. Sci. Total Environ. 466-467, 56–66 (2014)CrossRefGoogle Scholar
  7. Bae, M.S., Schauer, J.J., Lee, T., Jeong, J.-H., Kim, Y.-K., Ro, C.-U., Song, S.-K.,, Shon, Z.-H.: Relationship between reactive oxygen species and water-soluble organic compounds: Time-resolved benzene carboxylic acids measurement in the coastal area during the KORUS-AQ campaign, Environ. Pollut. 231, 1–12 (2017)Google Scholar
  8. Bougiatioti, A., Zarmpas, P., Koulouri, E., Antoniou, M., Theodosi, C., Kouvarakis, G., Saarikoski, S., Mäkelä, T., Hillamo, R., Mihalopoulos, N.: Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the eastern Mediterranean. Atmos. Environ. 64, 251–262 (2013)CrossRefGoogle Scholar
  9. Cavalli, F., Facchini, M.C., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon, Y.J., O'Dowd, C.D., Putaud, J.P., Dell'Acqua, A.: Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J. Geophys. Res. Atmos. 109, D24215 (2004)CrossRefGoogle Scholar
  10. Degrendele, C., Okonski, K., Melymuk, L., Landlová, L., Kukučka, P., Audy, O., Kohoutek, J., Čupr, P., Klánová, J.: Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides. Atmos. Chem. Phys. 16, 1531–1544 (2016)CrossRefGoogle Scholar
  11. Deshmukh, D.K., Kawamura, K., Lazaar, M., Kunwar, B., Boreddy, S.K.R.: Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific rim: size distributions and formation processes. Atmos. Chem. Phys. 16, 5263–5282 (2016)CrossRefGoogle Scholar
  12. Gantt, B., Meskhidze, N., Carlton, A.G.: The contribution of marine organics to the air quality of the western United States. Atmos. Chem. Phys. 10, 7415–7423 (2010)CrossRefGoogle Scholar
  13. Gong, X., Zhang, C., Chen, H., Nizkorodov, S.A., Chen, J., Yang, X.: Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai. Atmos. Chem. Phys. 16, 5399–5411 (2016)CrossRefGoogle Scholar
  14. Guo, H., Xu, L., Bougiatioti, A., Cerully, K.M., Capps, S.L., Hite Jr., J.R., Carlton, A.G., Lee, S.H., Bergin, M.H., Ng, N.L., Nenes, A., Weber, R.J.: Fine-particle water and pH in the southeastern United States. Atmos. Chem. Phys. 15, 5211–5228 (2015)CrossRefGoogle Scholar
  15. Ham, W.A., Kleeman, M.J.: Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in Central California. Atmos. Environ. 45, 3988–3995 (2011)CrossRefGoogle Scholar
  16. Han, Y., Stroud, C.A., Liggio, J., Li, S.M.: The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions. Atmos. Chem. Phys. 16, 13929–13944 (2016)CrossRefGoogle Scholar
  17. Hennigan, C.J., Izumi, J., Sullivan, A.P., Weber, R.J.: Nenes, A. a critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 15, 2775–2790 (2015)CrossRefGoogle Scholar
  18. Ho, K.F., Ho, S.S., Lee, S.C., Kawamura, K., Zou, S.C., Cao, J.J., Xu, H.M.: Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in Pearl Delta river region, China. Atmos. Chem. Phys. 11, 2197–2208 (2011)CrossRefGoogle Scholar
  19. Huang, C.L., Bao, L.J., Luo, P., Wang, Z.Y., Li, S.M., Zeng, E.Y.: Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particle-bound heavy metals. J. Hazard. Mater. 317, 449–456 (2016)CrossRefGoogle Scholar
  20. Jeon, W., Choi, Y., Lee, H.W., Lee, S.H., Yoo, J.W., Park, J., Lee, H.J.: A quantitative analysis of grid nudging effect on each process of PM2.5 production in the Korean peninsula. Atmos. Environ. 122, 763–774 (2015)CrossRefGoogle Scholar
  21. Kautzman, K.E., Surratt, J.D., Chan, M.N., Chan, A.W.H., Hersey, S.P., Chhabra, P.S., Dalleska, N.F., Wennberg, P.O., Flagan, R.C., Seinfeld, J.H.: Chemical composition of gas- and aerosol-phase products from the Photooxidation of naphthalene. J. Phys. Chem. 114, 913–934 (2010)CrossRefGoogle Scholar
  22. Kawamura, K., Kaplan, I.R.: Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 21, 105–110 (1987)CrossRefGoogle Scholar
  23. Kim, K.H., Sekiguchi, K., Kudo, S., Sakamoto, K., Hata, M., Furuuchi, M., Otani, Y., Tajima, N.: Performance test of an inertial fibrous filter for ultrafine particle collection and the possible sulfate loss when using an aluminum substrate with ultrasonic extraction of ionic compounds. Aerosol Air Qual. Res. 10, 616–624 (2010)CrossRefGoogle Scholar
  24. Kim, W., Doh, S.J., Yu, Y.: Asian dust storm as conveyance media of anthropogenic pollutants. Atmos. Environ. 49, 41–50 (2012)CrossRefGoogle Scholar
  25. Kleeman, M.J., Robert, M.A., Riddle, S.G., Fine, P.M., Hays, M.D., Schauer, J.J., Hannigan, M.P.: Size distribution of trace organic species emitted from biomass combustion and meat charbroiling. Atmos. Environ. 42, 3059–3075 (2008)CrossRefGoogle Scholar
  26. Kleindienst, T.E., Jaoui, M., Lewandowski, M., Offenberg, J.M., Docherty, K.S.: The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides. Atmos. Chem. Phys. 12, 8711–8726 (2012)CrossRefGoogle Scholar
  27. Kouvarakis, G., Mihalopoulos, N.: Seasonal variation of dimethylsulfide in the gas phase and of methanesulfonate and non-sea-salt sulfate in the aerosols phase in the eastern Mediterranean atmosphere. Atmos. Environ. 36, 929–938 (2002)CrossRefGoogle Scholar
  28. Krudysz, M.A., Froines, J.R., Fine, P.M., Sioutas, C.: Intra-community spatial variation of size-fractionated PM mass, OC, EC, and trace elements in the Long Beach, CA area. Atmos. Environ. 42, 5374–5389 (2008)CrossRefGoogle Scholar
  29. Li, W.J., Shao, L.Y.: Observation of nitrate coatings on atmospheric mineral dust particles. Atmos. Chem. Phys. 9, 1863–1871 (2009)CrossRefGoogle Scholar
  30. Li, J., Wang, X., Chen, J., Zhu, C., Li, W., Li, C., Liu, C., Xu, C., Wen, L., Xue, L., Wang, W., Ding, A., Herrmann, H.: Chemical composition and droplet size distribution of cloud at the summit of mount tai, China. Atmos. Chem. Phys. 17, 9885–9896 (2017)CrossRefGoogle Scholar
  31. Liao, C.M., Chio, C.P., Chen, W.Y., Ju, Y.R., Li, W.H., Cheng, Y.H., Liao, V.H.C., Chen, S.C., Ling, M.P.: Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: a preliminary probabilistic assessment. J. Hazard. Mater. 190, 150–158 (2011)CrossRefGoogle Scholar
  32. Mader, B.T., Schauer, J.J., Seinfeld, J.H., Flagan, R.C., Yu, J.Z., Yang, H., Lim, H.J., Turpin, B.J., Deminter, J.T., Heidemann, G., Bae, M.S., Quinn, P., Bates, T., Eatough, D.J., Huebert, B.J., Bertram, T., Howell, S.: Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia. Atmos. Environ. 37, 1435–1449 (2003)CrossRefGoogle Scholar
  33. Maji, S., Ahmed, S., Siddiqui, W.A., Ghosh, S.: Short term effects of criteria air pollutants on daily mortality in Delhi, India. Atmos. Environ. 150, 210–219 (2017)CrossRefGoogle Scholar
  34. Mandalakis, M., Apostolaki, M., Tziaras, T., Polymenakou, P., Stephanou, E.G.: Free and combined amino acids in marine background atmospheric aerosols over the eastern Mediterranean. Atmos. Environ. 45, 1003–1009 (2011)CrossRefGoogle Scholar
  35. O'Dowd, C.D., Facchini, M.C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon, Y.J., Putaud, J.P.: Biogenically driven organic contribution to marine aerosol. Nat. 431, 676–680 (2004)CrossRefGoogle Scholar
  36. Park, S.S., Sim, S.Y., Bae, M.S., Schauer, J.J.: Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmos. Environ. 73, 62–72 (2013)CrossRefGoogle Scholar
  37. Plaza, J., Pujadas, M., Gómez-Moreno, F.J., Sánchez, M., Artíñano, B.: Mass size distributions of soluble sulfate, nitrate and ammonium in the Madrid urban aerosol. Atmos. Environment. 45, 4966–4976 (2011)CrossRefGoogle Scholar
  38. Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T.: Sources of Fine organic aerosol. 8. Boilers burning no. 2 distillate fuel oil. Environ. Sci. Technol. 31, 2731–2737 (1997)CrossRefGoogle Scholar
  39. Ruddick, K., Neukermans, G., Vanhellemont, Q., Jolivet, D.: Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: a review of recent results. Remote Sens. Environ. 146, 63–76 (2014)CrossRefGoogle Scholar
  40. Sahani, M., Zainon, N.A., Wan Mahiyuddin, W.R., Latif, M.T., Hod, R., Khan, M.F., Tahir, N.M., Chan, C.C.: A case-crossover analysis of forest fire haze events and mortality in Malaysia. Atmos. Environ. 96, 257–265 (2014)CrossRefGoogle Scholar
  41. Salma, I., Füri, P., Németh, Z., Balásházy, I., Hofmann, W., Farkas, Á.: Lung burden and deposition distribution of inhaled atmospheric urban ultrafine particles as the first step in their health risk assessment. Atmos. Environ. 104, 39–49 (2015)CrossRefGoogle Scholar
  42. Shim, C., Lee, J., Wang, Y.: Effect of continental sources and sinks on the seasonal and latitudinal gradient of atmospheric carbon dioxide over East Asia. Atmos. Environ. 79, 853–860 (2013)CrossRefGoogle Scholar
  43. Simoneit, B.R.T., Kobayashi, M., Mochida, M., Kawamura, K., Huebert, B.J.: Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: composition and major sources of the organic compounds. J. Geophys. Res. Atmos. 109, D19S09 (2004)Google Scholar
  44. Stone, E.A., Yoon, S.C., Schauer, J.J.: Chemical characterization of fine and coarse particles in Gosan, Korea during springtime dust events. Aerosol Air Qual. Res. 11, 31–43 (2011)CrossRefGoogle Scholar
  45. Sullivan, R.C., Moore, M.J.K., Petters, M.D., Kreidenweis, S.M., Roberts, G.C., Prather, K.A.: Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. Phys. Chem. Chem. Phys. 11, 7826–7837 (2009)CrossRefGoogle Scholar
  46. Tan, J., Duan, J., Zhen, N., He, K., Hao, J.: Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. Atmos. Res. 167, 24–33 (2016)CrossRefGoogle Scholar
  47. Tang, G., Zhao, P., Wang, Y., Gao, W., Cheng, M., Xin, J., Li, X., Wang, Y.: Mortality and air pollution in Beijing: the long-term relationship. Atmos. Environ. 150, 238–243 (2017)CrossRefGoogle Scholar
  48. Tyagi, P., Ishimura, Y., Kawamura, K.: Hydroxy fatty acids in marine aerosols as microbial tracers: 4-year study on β- and ω-hydroxy fatty acids from remote Chichijima Island in the western North Pacific. Atmos. Environ. 115, 89–100 (2015)CrossRefGoogle Scholar
  49. Wang, Y.F., Tsai, P.J., Chen, C.W., Chen, D.R., Dai, Y.T.: Size distributions and exposure concentrations of nanoparticles associated with the emissions of oil mists from fastener manufacturing processes. J. Hazard. Mater. 198, 182–187 (2011)CrossRefGoogle Scholar
  50. Wu, Y., Wang, X., Tao, J., Huang, R., Tian, P., Cao, J., Zhang, L., Ho, K.F., Zhang, R.: Size distribution and source of black carbon aerosol in urban Beijing during winter haze episodes. Atmos. Chem. Phys. 17, 7965–7975 (2017)CrossRefGoogle Scholar
  51. Xu, J.Z., Zhang, Q., Wang, Z.B., Yu, G.M., Ge, X.L., Qin, X.: Chemical composition and size distribution of summertime PM2.5 at a high altitude remote location in the northeast of the Qinghai–Xizang (Tibet) plateau: insights into aerosol sources and processing in free troposphere. Atmos. Chem. Phys. 15, 5069–5081 (2015)CrossRefGoogle Scholar
  52. Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prévôt, A.S.H., Vonwiller, M., Szidat, S., Ge, J., Ma, J., An, Y., Kang, S., Qin, D.: Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer. Atmos. Chem. Phys. 16, 14937–14957 (2016)CrossRefGoogle Scholar
  53. Yeatman, S.G., Spokes, L.J., Jickells, T.D.: Comparisons of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites. Atmos. Environ. 35, 1321–1335 (2001)CrossRefGoogle Scholar
  54. Zhang, X., McMurry, P.H.: Evaporative losses of fine particulate nitrates during sampling. Atmos. Environ. 26, 3305–3312 (1992)CrossRefGoogle Scholar
  55. Zhang, Q., Jimenez, J.L., Worsnop, D.R., Canagaratna, M.: A case study of urban particle acidity and its influence on secondary organic aerosol. Environ. Sci. Technol. 41, 3213–3219 (2007)CrossRefGoogle Scholar
  56. Zhao, H., Stephens, B.: Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences. Indoor Air. 27, 218–229 (2017)CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Min-Suk Bae
    • 1
    Email author
  • Taehyoung Lee
    • 2
  • James J. Schauer
    • 3
  • Gyutae Park
    • 2
  • Young-Baek Son
    • 4
  • Ki-Hyun Kim
    • 5
  • Seung-Sik Cho
    • 6
  • Seung Shik Park
    • 7
  • Kihong Park
    • 8
  • Zang-Ho Shon
    • 9
  1. 1.Department of Environmental EngineeringMokpo National UniversityMuanRepublic of Korea
  2. 2.Department of Environmental ScienceHankuk University of Foreign StudiesGyeonggiRepublic of Korea
  3. 3.Department of Civil & Environmental EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Korea Institute of Ocean Science & TechnologyJejuRepublic of Korea
  5. 5.Department of Civil and Environmental EngineeringHanyang UniversitySeoulRepublic of Korea
  6. 6.Department of Pharmacy, College of PharmacyMokpo National UniversityMuanRepublic of Korea
  7. 7.Department of Environment and Energy EngineeringChonnam National UniversityGwangjuRepublic of Korea
  8. 8.School of Earth Sciences and Environmental Science and EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  9. 9.Department of Environmental EngineeringDong-Eui UniversityBusanRepublic of Korea

Personalised recommendations