The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit

  • June-Yi Lee
  • MinHo KwonEmail author
  • Kyung-Sook Yun
  • Seung-Ki Min
  • In-Hong Park
  • Yoo-Geun Ham
  • Emilia Kyung Jin
  • Joo-Hong Kim
  • Kyong-Hwan Seo
  • WonMoo Kim
  • So-Young Yim
  • Jin-Ho Yoon


Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.

Key words

Changma East Asian summer monsoon interdecadal change Typhoon landfalls ENSO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 2044–2055, doi:10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.CrossRefGoogle Scholar
  2. Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the east Asian summer monsoon and the tropical SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310–4325.CrossRefGoogle Scholar
  3. Chen, J. M., T. Li, and C. F. Shih, 2010: Tropical cyclone- and monsooninduced rainfall variability in Taiwan. J. Climate, 23, 4107–4120, doi: 10.1175/2010JCLI3355.1.CrossRefGoogle Scholar
  4. Chen, X., and T. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res., 119, 13043–13066, doi:10.1002/2014-JD022064.Google Scholar
  5. Chikamoto, Y., A. Timmermann, J.-J. Luo, T. Mochizuki, M. Kimoto, M. Watanabe, M. Ishii, S.-P. Xie, and F.-F. Jin, 2015: Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, doi:10.1038/ncomms7869.CrossRefGoogle Scholar
  6. Choi, I.-J., E. K. Jin, J.-Y. Han, S.-Y. Kim, and Y. Kwon, 2015: Sensitivity of diurnal variation in simulated precipitation during East Asian summer monsoon to cumulus parameterization schemes. J. Geophys. Res., 120, 11971–11987, doi:10.1002/2015JD023810.Google Scholar
  7. Choi, J.-W., Y. Cha, and H.-D. Kim, 2017: Interdecadal variation of precipitation days in August in the Korean Peninsula. Dynam. Atmos. oceans, 77, 74–88, doi:10.1016/j.dynatmoce.2016.10.003.CrossRefGoogle Scholar
  8. Choi, K.-S., B.-J. Kim, D.-W. Kim, and H.-R. Byun, 2010: Interdecadal variation of tropical cyclone making landfall over the Korean Peninsula. Int. J. Climatol., 30, 1472–1483, doi:10.1002/joc.1986.Google Scholar
  9. Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropicalextratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 1879–1896, doi:10.1175/2011JCLI3621.1.Google Scholar
  10. Ding, R., K.-J. Ha, and J. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 1059–1071, doi:10.1007/s00382-009-0555-2.CrossRefGoogle Scholar
  11. Fan, L., S.-I. Shin, Q. Liu, and Z. Liu, 2013: Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys. Res. Lett., 40, 2471–2477, doi:10.1002/grl.50494.CrossRefGoogle Scholar
  12. Graham, N., 1994: Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Climate Dyn., 10, 135–162.CrossRefGoogle Scholar
  13. Ha, K.-J., S.-K. Park, and K.-Y. Kim, 2005: On interannual characteristics of climate prediction center merged analysis precipitation over the Korean Peninsula during the summer monsoon season. Int. J. Climatol., 25, 99–116, doi:10.1002/joc.1116.CrossRefGoogle Scholar
  14. Ha, K.-J., K.-S. Yun, J.-G. Jhun, and J.-P. Li, 2009: Circulation changes associated with the interdecadal shift of Korean August rainfall around late 1960s. J. Geophys. Res., 114, D04115, doi:10.1029/2008JD011287.CrossRefGoogle Scholar
  15. Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun, 2016: Linkages between the South and East Asian summer monsoons: A review and revisit. J. Climate under revision.Google Scholar
  16. Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112–116, doi:10.1038/ngeo1686.CrossRefGoogle Scholar
  17. Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophy. Res. Lett., 40, 4012–4017, doi:10.1002/grl.50729.CrossRefGoogle Scholar
  18. Ham, Y.-G., Y. Chikamoto, J.-S. Kug, M. Kimoto, and T. Mochizuki, 2016: Tropical Atlantic-Korea teleconnection pattern during boreal summer season. Climate Dyn., doi:10.1007/s00382-016-3474-z.Google Scholar
  19. He, C., and T. Zhou, 2014: Decadal change of the connection between summer western North Pacific subtropical high and tropical SST in the early 1990s. Atmos. Sci. Lett., 16, 253–259, doi:10.1002/asl2.550.CrossRefGoogle Scholar
  20. He, C., and T. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 Scenarios projected by 33 CMIP5 Models: The dominance of tropical Indian Ocean-tropical western Pacific SST gradient. J. Climate, 28, 365–380, doi:10.1175/JCLI-D-13-00494.1.CrossRefGoogle Scholar
  21. Ho, C.-H., and I.-S. Kang, 1988: The variability of precipitation in Korea. J. Korean Meteor. Soc., 24, 38–48 (in Korean).Google Scholar
  22. Ho, C.-H., J.-Y. Lee, M.-H. Ahn, and H.-S. Lee, 2003: A sudden change in summer rainfall characteristics in Korea during the late 1970s. Int. J. Climatol., 23, 117–128.CrossRefGoogle Scholar
  23. Ho, C.-H., J.-J. Baik, J.-H. Kim, D.-Y. Gong, and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 1767–1776.CrossRefGoogle Scholar
  24. Hong, C.-C., T.-C. Chang, and H.-H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res., 119, 3715–3722, doi:10.1002/2013JD021394.CrossRefGoogle Scholar
  25. Hong, S., I.-S. Kang, I. Choi, and Y.-G. Ham, 2013: Climate responses in the tropical Pacific associated with Atlantic warming in recent decades. Asia-Pac. J. Atmos. Sci., 49, 209–217, doi:10.1007/s13143-013-0022-1.CrossRefGoogle Scholar
  26. Hu, Z.-Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500-hPa height and global sea surface temperature. J. Geophys. Res., 102, 19403–19412.CrossRefGoogle Scholar
  27. Huang, W. R., J. C. L. Chan, and S. Y. Wang, 2010: A planetary-scale land-sea breeze circulation in East Asia and the western North Pacific. Quart. J. Roy. Meteor. Soc., 136, 1543–1553, doi:10.1002/qj.663.CrossRefGoogle Scholar
  28. Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.CrossRefGoogle Scholar
  29. Jeong, J.-H., and Coauthors, 2016: The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review. Asia-Pac. J. Atmos. Sci., 53, 149–173, doi:10.1007/s13143-017-0008-5.CrossRefGoogle Scholar
  30. Jhun, J.-G., and B.-K. Moon, 1997: Restorations and analyses of rainfall amount observed by Chukwookee. J. Korean Meteor. Soc., 33, 691–707 (in Korean).Google Scholar
  31. Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 1526–1543, doi: 10.1175/2009JCLI3303.1.CrossRefGoogle Scholar
  32. Jin, E. K., 2016: Changes in diurnal variations of summer precipitation over South Korea. Submitted to Climate Dyn.Google Scholar
  33. Jung, J.-H., and M.-S. Suh, 2005: Characteristics and types of the diurnal variation of hourly precipitation during rainy season over South Korea. J. Korean Meteorol. Soc., 41, 533–546 (in Korean).Google Scholar
  34. Kajikawa, Y., T. Yasunari, and B. Wang, 2009: Decadal change in intraseasonal variability over the South China Sea. Geophys. Res. Lett., 36, L06810, doi:10.1029/2009GL037174.CrossRefGoogle Scholar
  35. Kajikawa, Y., and B. Wang, 2012: Interdecadal change of the South China Sea summer monsoon onset. J. Climate, 25, 3207–3218, doi:10.1175/JCLID-11-00207.1.CrossRefGoogle Scholar
  36. Kanamitzu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  37. Kang, I.-S., C.-H. Ho, Y.-K. Lim, and K.-M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322–340.CrossRefGoogle Scholar
  38. Kim, B.-J., R. H. Kripalani, J.-H. Oh, and S.-E. Moon, 2002: Summer monsoon rainfall patterns over South Korea and associated circulation features. Theor. Appl. Climatol., 72, 65–74.CrossRefGoogle Scholar
  39. Kim, C.-S., and M.-S. Suh, 2008: Change-point in the recent (1976-2005) precipitation over South Korea. Atmosphere, 18, 110–120 (in Korean with English abstract).Google Scholar
  40. Kim, J.-H., C.-H. Ho, M.-H. Lee, J.-H. Jeong, and D. Chen, 2006: Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. Geophys. Res. Lett., 33, L18706, doi:10. 1029/2006GL027430.Google Scholar
  41. Kim, J.-H., C.-C. Wu, C.-H. Sui, and C.-H. Ho, 2012: Tropical cyclone contribution to interdecadal change in summer rainfall over South China in the early 1990s. Terr. Atmos. Oceanic Sci., 23, 49–58, doi: 10.3319/TAO.2011.08.26.01(A).CrossRefGoogle Scholar
  42. Kim, J.-Y., K.-H. Seo, J.-H. Son, and K.-J. Ha, 2017: Development of statistical prediction models for Changma precipitation: An ensemble approach. Asia-Pac. J. Atmos. Sci., 53, same as this volume.Google Scholar
  43. Kim, S.-S., 1988: Comments on the Chinese claim for the invection of Chukwookee. J. Korean Met. Soc., 24, 1–13.Google Scholar
  44. Kim, W., J.-G. Jhun, K.-J. Ha, and M. Kimoto, 2011: Decadal changes in climatological intraseasonal fluctuation of subseasonal evolution of summer precipitation over the Korean Peninsula in the mid-1990s. Adv. Atmos. Sci., 28, 591–600, doi:10.1007/s00376-010-0037-9.CrossRefGoogle Scholar
  45. Ko, J.-W., H.-J. Baek, and W.-T. Kwon, 2005: The characteristics of precipitation and regionalization during rainy season in Korea. J. Korean Meteor. Soc., 41, 101–114.Google Scholar
  46. Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 2009–2030, doi:10.1256/qj.05.204.CrossRefGoogle Scholar
  47. Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc. Natl. Acad. Sci., 110, 7574–7579, doi:10.1073/pnas.1215582110.CrossRefGoogle Scholar
  48. Kubota, H., and B. Wang, 2009: How much do tropical cyclones affect seasonal and interannual rainfall variability over the western North Pacific? J. Climate, 22, 5495–5510, doi:10.1175/2009JCLI2646.1.CrossRefGoogle Scholar
  49. Kwon, M., J.-G. Jhun, B. Wang, S.-I. An, and J.-S. Kug, 2005: Decadal change in relationship between east Asian and WNP summer monsoons. Geophys. Res. Lett., 32, L16709, doi:10.1029/2005GL-023026.CrossRefGoogle Scholar
  50. Kwon, M., J.-G. Jhun, and K.-J. Ha, 2007: Decadal change in east Asian summer monsoon circulationin the mid-1990s. Geophys. Res. Lett., 34, L21706, doi:10.1029/2007GL031977.CrossRefGoogle Scholar
  51. Lee, E.-J., K.-J. Ha, and J.-G. Jhun, 2014a: Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents. Climate Dyn., 42, 2585–2601, doi:10.1007/s00382-013-1762-4.CrossRefGoogle Scholar
  52. Lee, G.-H., and K.-H. Seo, 2008: Analysis of diurnal and semidiurnal cycles of precipitation over South Korea. Atmosphere, 18, 475–483 (in Korean with English abstract).Google Scholar
  53. Lee, J.-Y., and K.-J. Ha, 2015: Understanding of interdecadal changes in variability and predictability of the Northern Hemisphere summer tropical-extratropical teleconnection. J. Climate, 28, 8634–8647, doi: 10.1175/JCLI-D-15-0154.1.CrossRefGoogle Scholar
  54. Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahn, A. Kumar, B. Stern, and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 1189–1203, doi:10. 1007/s00382-010-0909-9.CrossRefGoogle Scholar
  55. Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493–509, doi:10.1007/s00382-012-1544-4.CrossRefGoogle Scholar
  56. Lee, J.-Y., B. Wang, K.-H. Seo, J.-S. Kug, Y.-S. Choi, Y. Kosaka, and K.-J. Ha, 2014b: Future change of Northern Hemisphere summer tropicalextratropical teleconnection in CMIP5 models. J. Climate, 27, 3643–3664, doi:10.1175/JCLI-D-13-00261.1.CrossRefGoogle Scholar
  57. Lee, S.-E., and K.-H. Seo, 2013: The development of a statistical forecast model for Changma. Wea. Forecasting, 28, 1304–1321, doi:10.1175/WAF-D-13-00003.1.CrossRefGoogle Scholar
  58. Lee, S.-H., and W.-T. Kwon, 2004: A variation of summer rainfall in Korea. J. Korean Geogr. Sci., 39, 819–832 (in Korean).Google Scholar
  59. Lee, S.-S., P. N. Vinayachandran, K.-J. Ha, and J.-G. Jhun, 2010: Shift of peak in summer monsoon rainfall over Korea and its association with El Nino-Southern Oscillation. J. Geophys. Res., 115, D02111, doi:10.1029/2009JD011717.CrossRefGoogle Scholar
  60. Li, S., Y. Jing, and F. Luo, 2015: The potential connection between China surface air temperature and the Atlantic Multidecadal Oscillation (AMO) in the Pre-industrial Period. Sci. China Earth Sci., 58, 1814–1826, doi:10.1007/s11430-015-5091-9.CrossRefGoogle Scholar
  61. Lim, G.-H., and H.-J. Kwon, 1998: Diurnal variation of precipitation over South Korea and its implication. J. Korean Meteor. Soc., 34, 222–237.Google Scholar
  62. Linderholm, H. W., T. Ou, J.-H. Jeong, C. K. Folland, D. Gong, H. Liu, Y. Liu, and D. Chen, 2011: Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. J. Geophys. Res., 116, D13107, doi:10.1029/2010JD015235.CrossRefGoogle Scholar
  63. Liu, Y. H., G. M. Henderson, C.-Y. Hu, A. J. Mason, N. Charnley, K. R. Johnson, and S.-C. Xie, 2013: Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event. Nat. Geosci., 6, 117–120, doi:10.1038/ngeo1708.CrossRefGoogle Scholar
  64. Lu, R., H. Ye, and J.-G. Jhun, 2011: Weakening of interannual variability in the summer East Asian upper-tropospheric westerly jet since the mid-1990s. Adv. Atmos. Sci., 28, 1246–1258, doi:10.1007/s00376-011-0222-5.CrossRefGoogle Scholar
  65. Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105–117, doi:10.1007/s00382-003-0327-3.CrossRefGoogle Scholar
  66. McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change, 4, 888–892, doi:10.1038/nclimate2330.CrossRefGoogle Scholar
  67. Min, S.-K., and Coauthors, 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci., 51, 103–121, doi:10.1007/s13143-015-0066-5.CrossRefGoogle Scholar
  68. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390.CrossRefGoogle Scholar
  69. Oh, H.-E., and K.-J. Ha, 2015: Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon. Climate Dyn., 44, 1741–1766, doi:10.1007/s00382-014-2268-4.CrossRefGoogle Scholar
  70. Park, C.-Y., J.-Y. Moon, E.-J. Cha, W.-T. Yun, and Y.-E. Choi, 2008: Recent chages in summer precipitation characteristics over South Korea. J. Korean Geogr. Soc., 45, 324–336.Google Scholar
  71. Park, D.-S., C.-H. Ho, J.-H. Kim, and H.-S. Kim, 2011: Strong landfall typhoons in Korea and Japan in a recent decade. J. Geophys. Res., 116, D07105, doi:10.1029/2010JD014801.Google Scholar
  72. Park, H.-L., K.-H. Seo, and J.-H. Son, 2015: Development of dynamicsbased statistical prediction model for the Changma onset. J. Climate, 28, 6647–6666, doi:10.1175/JCLI-D-14-00502.1.CrossRefGoogle Scholar
  73. Park, M.-S., M.-I. Lee, H. Kim, J. Im, and J. M. Yoo, 2016: Spatial and diurnal variations of storm heights in the East Asia summer monsoon: Storm height regimes and large-scale diurnal modulation. Climate Dyn., 46, 745–763, doi:10.1007/s00382-015-2610-5.CrossRefGoogle Scholar
  74. Porter, S. C., and Z. S. An, 1995: Correlation between climate events in the North-Atlantic and China during last glaciation. Nature, 375, 305–308.CrossRefGoogle Scholar
  75. Preethi, B., M. Mujumdar, R. H. Kripalani, A. Prabhu, and R. Krishnan, 2017: Recent trends and tele-connections among South and East Asian summer monsoons in a warming environment. Climate Dyn., 48, 2489–2505, doi:10.1007/s00382-016-3218-0.CrossRefGoogle Scholar
  76. Ramage, C. S., 1952: Diurnal variation of summer rainfall over east China, Korea and Japan. J. Meteorol., 9, 83–86.CrossRefGoogle Scholar
  77. Ren, F., G. Wu, W. Dong, X. Wang, Y. Wang, W. Ai, and W. Li, 2006: Changes in tropical cyclone precipitation over China. Geophys. Res. Lett., 33, L20702, doi:10.1029/2006GL027951.CrossRefGoogle Scholar
  78. Rodgers, E. B., R. F. Adler, and H. F. Pierce, 2000: Contribution of tropical cyclnoes to the North Pacific climatological rainfall as observed from satellites. J. Appl. Meteorol., 39, 1658–1678.CrossRefGoogle Scholar
  79. Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113–134, doi:10.1175/2009JCLI3128.1.CrossRefGoogle Scholar
  80. Seo, K.-H., J.-H. Son, and J.-Y. Lee, 2011: A new look at Changma. Atmosphere, 21, 109–121.Google Scholar
  81. Seo, K.-H., J.-H. Son, J.-Y. Lee, and H.-S. Park, 2015: Northerneast Asian monsoon precipitation revealed by airmass variability and its prediction. J. Climate, 28, 6221–6233, doi:10.1175/JCLI-D-14-00526.1.CrossRefGoogle Scholar
  82. Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperature based on COADS data (1854-1997). J. Climate, 16, 1495–1510.CrossRefGoogle Scholar
  83. Sohn, B. J., G.-H. Ryu, H.-J. Song, and M.-L. Ou, 2013: Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements. Mon. Wea. Rev., 141, 3873–3888, doi:10.1175/MWR-D-13-00075.1.CrossRefGoogle Scholar
  84. Sun, Y., S. C. Clemens, C. Morrill, X. Lin, X. Wang, and Z. An, 2012: Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat. Geosci., 5, 46–49, doi:10.1038/ngeo1326.CrossRefGoogle Scholar
  85. Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 1093–1111, doi:10.1175/JCLI-D-14-00225.1.CrossRefGoogle Scholar
  86. Tomita, T., T. Yamaura, and T. Hashimoto, 2011: Interannual variability of the baiu season near Japan evaluated from the equivalent potential temperature. J. Meteor. Soc. Japan, 89, 517–537, doi:10.2151/jmsj.2011-507.CrossRefGoogle Scholar
  87. Tomita, T., T. Yamaura, and Y. Kuwazuru, 2013: Decadal-scale modulation of atmospheric circulation change at the onset of the western North Pacific summer monsoon. Sci. Online Lett. Atmos., 9, 161–165, doi:10.2151/sola.2013-036.Google Scholar
  88. Ueda, H., Y. Kamae, M. Hayasaki, A. Kitoh, S. Watanabe, Y. Miki, and A. Kumai, 2015: Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nature Commun., 6, 8854, doi:10.1038/ncomms9854.CrossRefGoogle Scholar
  89. Vandenberghe, J., H. Renssen, K. van Huissteden, G. Nugteren, M. Konert, H. Lu, A. Dodonov, and J.-P. Buylaert, 2006: Penetration of Atlantic westerly winds into Central and East Asia. Quaternary Sci. Rev., 25, 2380–2389, doi:10.1016/j.quascirev.2006.02.017.CrossRefGoogle Scholar
  90. Wang, B., 1995: Interdecadal changes in El Nino onset in the last four decades. J. Climate, 8, 267–285.CrossRefGoogle Scholar
  91. Wang, B., and Lin Ho, 2002: Rainy deason of the Asian-Pacific dummer monsoon. J. Climate, 15, 386–398, doi:10.1175/1520-0442(2002)015 <0386:RSOTAP>2.0.CO;2.CrossRefGoogle Scholar
  92. Wang, B., Q. Ding, and J.-G. Jhun, 2006: Trends in Seoul (1778-2004) summer precipitation. Geophys. Res. Lett., 33, L15803, doi:10.1029/2006GL026418.CrossRefGoogle Scholar
  93. Wang, B., J.-G. Jhun, and B.-K. Moon, 2007: Variability and singularity of Seoul, South Korea, rainy season (1778-2004). J. Climate, 20, 2572–2580, doi:10.1175/JCLI4123.1.CrossRefGoogle Scholar
  94. Wang, B., J. Yang, T. Zhou, and B. Wang, 2008: Interdecadal changes in the major modes of Asian-Australian monsoon variability: Strengthening relationship with ENSO since the Late 1970s. J. Climate, 21, 1771–1789, doi:10.1175/2007JCLI1981.1.CrossRefGoogle Scholar
  95. Wang, B., B. Xiang, and J.-Y. Lee, 2013a: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci., 110, 2718–2722.CrossRefGoogle Scholar
  96. Wang, B., and Coauthors, 2013b: Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci., 110, 5347–5352, doi:10.1073/pnas.1214626110.CrossRefGoogle Scholar
  97. Wang, H., B. Wang, F. Huang, Q. Ding, and J.-Y. Lee, 2012: Interdecadal changes of the boreal summer circumglobal teleconnection (1958-2010). Geophys. Res. Lett., 39, L12704, doi:10.1029/2012GL052371.Google Scholar
  98. Weller, E., S.-K. Min, W. Cai, F. W. Zwiers, Y.-H. Kim, and D. Lee, 2016: Human-caused Indo-Pacific warm pool expansion. Sci. Adv., 2, e1501719, doi:10.1126/sciadv.1501719.CrossRefGoogle Scholar
  99. Wu, R., and B. Wang, 2002: A contrast of the east Asian summer monsoon-ENSO relationship between 1962-77 and 1978-93. J. Climate, 15, 3266–3279.CrossRefGoogle Scholar
  100. Wu, Y., S. Wu, and P. Zhai, 2007: The impact of tropical cyclones on Hainan Island’s extreme and total precipitation. Int. J. Climatol., 27, 1059–1064, doi:10.1002/joc.1464.CrossRefGoogle Scholar
  101. Xiang, B., and B. Wang, 2013: Mechanisms for the advanced Asian summer monsoon onset since the mid-to-late 1990s. J. Climate, 26, 1993–2009, doi:10.1175/JCLI-D-12-00445.1.CrossRefGoogle Scholar
  102. Xie, S., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Nino influences on Indo-western Pacific and East Asian climate in the 1970s. J. Climate, 23, 3352–3368, doi: 10.1175/2010JCLI3429.1.CrossRefGoogle Scholar
  103. Yamaura, T., and Y. Kajikawa, 2016: Decadal change in the boreal summer intraseasonal oscillation. Climate Dyn., 48, 3003–3014, doi:10.1007/s00382-016-3247-8.CrossRefGoogle Scholar
  104. Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784–801.CrossRefGoogle Scholar
  105. Yim, S.-Y., S.-W. Yeh, R. Wu, and J.-G. Jhun, 2008: The influence of ENSO on decadal variations in the relationship between the East Asian and western North Pacific summer monsoons. J. Climate, 21, 3165–3179, doi:10.1175/2007JCLI1948.1.CrossRefGoogle Scholar
  106. Yim, S.-Y., B. Wang, and M. Kwon, 2014: Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s. Climate Dyn., 42, 1325–1333, doi:10.1007/s00382-013-1760-6.CrossRefGoogle Scholar
  107. Yoon, H.-J., H.-J. Kim, and I.-H. Yoon, 2006: On the study of the seasonality precipitation over South Korea. J. Korean Earth Sci. Soc., 27, 149–158.Google Scholar
  108. Yuan, W., R. Yu, M. Zhang, W. Lin, H. Chen, and J. Li, 2012: Regimes of diurnal variation of summer rainfall over subtropical east Asia. J. Climate, 25, 3307–3320, doi:10.1175/JCLI-D-11-00288.1.CrossRefGoogle Scholar
  109. Yun, K.-S., K.-J. Ha, and B. Wang, 2010: Impacts of tropical ocean warming on East Asian summer climate. Geophys. Res. Lett., 37, L20809, doi:10.1029/2010GL044931.Google Scholar
  110. Yun, K.-S., J.-Y. Lee, and K.-J. Ha, 2014: Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient. J. Geophys. Res., 119, 8104–8116, doi: 10.1002/2014JD021692.Google Scholar
  111. Yun, K.-S., S.-W. Yeh, and K.-J. Ha, 2015: Covariability of western tropical Pacific-North Pacific atmospheric circulation during summer. Sci. Rep., 5, 16980, doi:10.1038/srep16980.CrossRefGoogle Scholar
  112. Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the east Asian summer monsoon. J. Climate, 17, 2780–2793.CrossRefGoogle Scholar
  113. Zheng, J., J. Li, and J. Feng, 2014: A dipole pattern in the Indian and Pacific oceans and its relationship with the East Asian summer monsoon. Environ. Res. Lett., 9, 074006.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • June-Yi Lee
    • 1
    • 2
  • MinHo Kwon
    • 3
    Email author
  • Kyung-Sook Yun
    • 1
  • Seung-Ki Min
    • 4
  • In-Hong Park
    • 4
  • Yoo-Geun Ham
    • 5
  • Emilia Kyung Jin
    • 6
  • Joo-Hong Kim
    • 7
  • Kyong-Hwan Seo
    • 2
    • 8
  • WonMoo Kim
    • 9
  • So-Young Yim
    • 10
  • Jin-Ho Yoon
    • 11
  1. 1.IBS Center for Climate PhysicsPusan National UniversityBusanKorea
  2. 2.Climate System and Research Center for Climate SciencesPusan National UniversityBusanKorea
  3. 3.Korea Institute of Ocean Science & TechnologyAnsanKorea
  4. 4.Division of Environmental Science and EngineeringPohang University of Science and TechnologyPohangKorea
  5. 5.Department of OceanographyChonnam National UniversityGwangjuKorea
  6. 6.Korea Institute of Atmospheric Prediction SystemsSeoulKorea
  7. 7.Korea Polar Research InstituteIncheonKorea
  8. 8.Department of Atmospheric SciencesPusan National UniversityBusanKorea
  9. 9.APEC Climate CenterBusanKorea
  10. 10.Korea Meteorological AdministrationSeoulKorea
  11. 11.School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuKorea

Personalised recommendations