Advertisement

Asia-Pacific Journal of Atmospheric Sciences

, Volume 53, Issue 1, pp 11–19 | Cite as

Baseline Surface Radiation Network (BSRN) quality control of solar radiation data on the Gangneung-Wonju National University radiation station

  • Il-Sung Zo
  • Joon-Bum JeeEmail author
  • Bu-Yo Kim
  • Kyu-Tae Lee
Article

Abstract

Gangneung-Wonju National University (GWNU) radiation station has been collecting data on global, direct, and diffuse solar radiation since 2011. We conducted a quality control (QC) assessment of GWNU data collected between 2012 and 2014, using procedures outlined by the Baseline Surface Radiation Network (BSRN). The QC process involved the comparison of observations, the correction of observational equipment, the examination of physically possible limits, and the comparative testing of observations and model calculations. Furthermore, we performed a shading check of the observational environment around the GWNU solar station. For each solar radiation element (observed every minute), we performed a QC check and investigated any flagged problems. 98.31% of the data were classified as good quality, while the remaining 1.69% were flagged as bad quality based on the shading check and comparison tests. We then compared the good-quality data to the global solar radiation data observed at the Gangwon Regional Office of Meteorology (GROM). After performing this comparison, the determination coefficient (R2; 0.98) and standard deviation (SD; 0.92 MJ m−2) increased compared to those computed before the QC check (0.97 and 1.09 MJ m−2). Even considering the geographical differences and weather effects between the two stations, these results are statistically significant. However, we also confirmed that the quality of the GROM data deteriorated in relation to weather conditions because of poor maintenance. Hence, we conclude that good-quality observational data rely on the maintenance of both observational equipment and the surrounding environment under optimal conditions.

Key words

Solar radiation observation Quality Control (QC) Baseline Surface Radiation Network (BSRN) Gangneung-Wonju National University (GWNU) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augustine, J. A., and E. G. Dutton, 2013: Variability of the Surface radiation budget over the United States from 1996 through 2011 from high-quality measurements. J. Geophys. Res. Atmos., 118, 43–53, doi: 10.1029/2012JD018551.CrossRefGoogle Scholar
  2. Augustine, J. A., G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina, 2005: An update on SURFRAD -The GCOS Surface Radiation budget network for the continental United States. J. Atmos. Oceanic Techol., 22, 1460–1472.CrossRefGoogle Scholar
  3. Carnicero, B. A., 2001: Characterization of Pyranometer Thermal Offset and Correction of Historical Data. Master of Science thesis, Virginia Polytechnic Institute and State University, 25 pp.Google Scholar
  4. Charlock, T. P., F. G. Rose, D. A. Rutan, C. K. Rutledge, L. Larman, Y. Hu, S. Kato, and M. Haeffelin, 2000: Surface and Atmospheric Radiation Budget (SARB) Validation Plan for CERES Subsystem 5.0. 52 pp.Google Scholar
  5. Charlock, T. P., F. G. Rose, and D. A. Rutan, 2003: Validation of the Archived CERES Surface and Atmosphere Radiation Budget (SARB) at SGP. Proc. Thirteenth ARM Science Team Meeting, Broomfield, USA.Google Scholar
  6. Christian, A. G., and R. M. Daryl, 2007: Solar radiation measurement: Progress in radiometry for improved modeling. In V. Badescu, Ed., Modeling Solar Radiation at the Earth’s Surface. Springer, 12–17.Google Scholar
  7. Fröhlich, C., 1997: World Radiometric Reference: WMO/CIMO Final Report, WMO No. 490, 97–100, Geneva, Switzerland.Google Scholar
  8. Gilgen, H., C. Whitlock, F. Koch, G. Muller, A. Ohmura, D. Steiger, and R. Wheeler, 1995: Technical Plan for BSRN (Baseline Surface Radiation Network) Data Management (version 2.1, final). WMO/TD-No. 443, WCRP/WMO, 57 pp.Google Scholar
  9. Gueymard, C. A., and J. A. Ruiz-Arias, 2016: Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Solar Energy, 128, 1–30, doi:10. 1016/j.solener.2015.10.010.CrossRefGoogle Scholar
  10. Hegner, H., G. Muller, V. Nespor, A. Ohmura, R. Steigrad, and H. Gilgen, 1998: Updates of the technical plan for BSRN data management. World Radiation Monitoring Center Tech. Rep. 2, WMO/TD-No. 882, WCRP/WMO, 60 pp.Google Scholar
  11. Heimo, A., A. Vernez, and P. Wasserfallen, 1993: Baseline Surface Radiation Network (BSRN): Concept and Implementation of a BSRN station. WMO/TD-No. 579, WCRP/WMO, 17 pp.Google Scholar
  12. International Organization of Standardization, 1990: Solar energy -Specification and classification of instruments for measuring hemispherical solar and direct solar radiation. ISO 9690, Geneva, Switzerland.Google Scholar
  13. Jee, J. B., I. S. Zo, and K. T. Lee, 2013: A study on the retrievals of downward solar radiation at the surface based on the observations from multiple geostationary satellites. Korean J. Remote Sens., 29, 123–135, doi:10.7780/kjrs.2013.29.1.12 (in Korean with English abstract).CrossRefGoogle Scholar
  14. Jung, Y. J., H. K. Cho, J. Kim, Y. J. Kim, and Y. M. Kim, 2011: The effects of clouds on enhancing surface solar irradiance. Atmosphere, 21, 131–142 (in Korean with English abstract).Google Scholar
  15. König-Langlo, G., R. Sieger, H. Schmith sen, A. B cker, F. Richter, and E. Dutton, 2013: The Baseline Surface Radiation Network and its World Radiation Monitoring Centre at the Alfred Wegener Institute. GCOS-174, 22 pp.Google Scholar
  16. Lanconelli, C., M. Busetto, E. G. Dutton, G. König-Langlo, M. Maturilli, R. Sieger, V. Vitale, and T. Yamanouchi, 2011: Polar baseline surface radiation measurements during the International Polar Year 2007-2009. Earth Syst. Sci. Data, 3, 1–8, doi:10.5194/essd-3-1-2011.CrossRefGoogle Scholar
  17. Long, C. N., and E. G. Dutton, 2002: BSRN Global Network recommended QCtests, V2.0. BSRN Technical Report.Google Scholar
  18. Long, C. N., and Y. Shi, 2006: The QCRad Value Added Product: Surface Radiation Measurement Quality Control Testing, Including Climatology Configurable Limits. U.S. Department of Energy. DOE/SC-ARM/TR-074, 69 pp.Google Scholar
  19. Major, M., 1994: Baseline Surface Radiation Network (BSRN). Circumsolar Correction for Pyrheliometers and Diffusometers. WMO/TD-No. 635, 42 pp.Google Scholar
  20. McArthur, L. J. B., 2004: Baseline Surface Radiation Network (BSRN), Operations Manual, WMO/TD-NO. 1274.Google Scholar
  21. Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, P. M. Cox, 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014–1018.CrossRefGoogle Scholar
  22. Morrison, R., 1998: Grounding and Shielding Techniques. Wiley-Interscience, 216 pp.Google Scholar
  23. Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 2115–2136.CrossRefGoogle Scholar
  24. Philipona, R., 2002: Underestimation of solar global and diffuse radiation measured at earth’s surface. J. Geophys. Res., 107, doi:10.1029/2002-JD002396.Google Scholar
  25. Pinker, R., I. Laszlo, Y. Wang, and J. D. Tarpley, 1996: GCIP GOES-8 shortwave radiation budget: Validation activity. Preprint, Second Int. Scientific Conf. on the Global Energy and Water Cycle, Washington, DC,245–249Google Scholar
  26. Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Atmosphere -aerosols, climate, and the hydrological cycle. Science, 243, 57–63.CrossRefGoogle Scholar
  27. Roesch, A., M. Wild, A. Ohmura, E. G. Dutton, C. N. Long, and T. Zhang, 2011: Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech., 4, 339–354, doi:10.5194/amt-4-339-2011.CrossRefGoogle Scholar
  28. Takeuchi, W., 2010: Investigating of cloud coverage statistics in Asia using NOAA AVHRR time series. Asian J. Geoinf., 10, 47–52.Google Scholar
  29. Tarpley, J. D., R. T. Pinker, and I. Laszlo, 1996: Experimental GOES shortwave radiation budget for GCIP. Preprint, Second Int. Scientific Conf. on the Global Energy and Water Cycle, Washington, DC,284–285.Google Scholar
  30. Wild, M., A. Ohmura, H. Gilgen, and E. Roeckner, 1995: Validation of GCM simulated radiative fluxes using surface observations. J. Climate, 8, 1309–1324.CrossRefGoogle Scholar
  31. World Meteorological Organization, 2008: Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8 (7th ed.), 681 pp.Google Scholar
  32. Wild, M., 2012: Third WMO Regional Pyrheliometer Comparison of RAII. Instruments and Observing Methods Report No. 113, 46 pp.Google Scholar
  33. Zo, I. S., J. B. Jee, and K. T. Lee, 2014: Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korea peninsula. Asia-Pac. J. Atmos. Sci., 50, 575–584, doi:10.1007/s13143-014-0047-0.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Il-Sung Zo
    • 1
  • Joon-Bum Jee
    • 2
    • 4
    Email author
  • Bu-Yo Kim
    • 1
    • 3
  • Kyu-Tae Lee
    • 1
    • 3
  1. 1.Research Institute for Radiation-SatelliteGangneung-Wonju National UniversityGangneungKorea
  2. 2.Weather Information Service EngineHankuk University of Foreign StudiesYonginKorea
  3. 3.Department of Atmospheric & Environmental SciencesGangneung-Wonju National UniversityGangneungKorea
  4. 4.Weather Information Service EngineHankuk University of Foreign StudiesYonginKorea

Personalised recommendations