Advertisement

A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid

  • Suk-Jin Choi
  • Song-You Hong
Article

Abstract

A new global model with a non-hydrostatic (NH) dynamical core is developed. It employs the spectral element method (SEM) in the horizontal discretization and the finite difference method (FDM) in the vertical discretization. The solver includes a time-split third-order Runge-Kutta (RK3) time-integration technique. Pursuing the quasi-uniform and pole singularity-free spherical geometry, a cubed-sphere grid is employed. To assess the performance of the developed dynamical solver, the results from a number of idealized benchmark tests for hydrostatic and non-hydrostatic flows are presented and compared. The results indicate that the non-hydrostatic dynamical solver is able to produce solutions with good accuracy and consistency comparable to reference solutions. Further evaluation of the model with a full-physics package demonstrates its capability in reproducing heavy rainfall over the Korean Peninsula, which confirms that coupling of the dynamical solver and full-physics package is robust.

Key words

Non-hydrostatic model spectral element method cubed-sphere grid idealized tests numerical weather prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Preprints. 8th Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.Google Scholar
  2. Bao. L., R. Klöfkorn, and D. Nair, 2015: Horizontally Explicit and Vertically Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin Nonhydrostatic Model. Mon. Wea. Rev., 143, 972–990.CrossRefGoogle Scholar
  3. Chen, C., and F. Xiao, 2008: Shallow Wter Model On Cubed-Sphere By Multi-Moment Finite Volume Method. J. Comput. Phys., 227, 5019–5044.CrossRefGoogle Scholar
  4. Chen, F., and J. Dudhia, 2001: Coupling and advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.CrossRefGoogle Scholar
  5. Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717–2731.CrossRefGoogle Scholar
  6. Chou, M.-D, and K.-T. Lee, 2005: A parameterization of the effective layer emission for infrared radiation calculations. J. Atmos. Sci., 62, 531–541.CrossRefGoogle Scholar
  7. Chou, M.-D, K.-T. Lee, S.-C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159–169.CrossRefGoogle Scholar
  8. Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299–3310.CrossRefGoogle Scholar
  9. Dennis, J., A. Fournier, W. F. Spotz, A. St.-Cyr, M. A. Taylor, S. J. Thomas, and H. Tufo, 2005: High resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perf. Comput. Appl., 19, 225–235.CrossRefGoogle Scholar
  10. Dennis, J., J. Edwards, K. J. Evans, O. N. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worly, 2011: CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int. J. High Perf. Comput. Appl., doi:10.1177/1094342011428142.Google Scholar
  11. Fournier, A., M. A. Taylor, and J. J. Tribbia, 2004: The spectral element atmosphere model (SEAM): high-resolution parallel computation and localized resolution of regional dynamics. Mon. Wea. Rev., 132, 726–748.CrossRefGoogle Scholar
  12. Giraldo, F. X., and T. E. Rosmond, 2004: A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests. Mon. Wea. Rev., 132, 133–153.CrossRefGoogle Scholar
  13. Giraldo, F. X., J. F. Kelly, and E. M. Constantinescu, 2013: Implicit-Explicit Formulations for a 3D Nonhydrostatic Unified Model of the Atmosphere (NUMA). SIAM Sci. Comp., 35, B1162–B1194.CrossRefGoogle Scholar
  14. Govett, M. W., J. Middlecoff, and T. Henderson, 2010: Running the NIM next-generation weather model on GPUs. 10th IEEE Int. Symp. on Cluster Computing and the Grid, IEEE, 792–796.Google Scholar
  15. Hall, D. M., P. A. Ullrich, L. A. Reed, C. Jablonowski, R. D. Nair, H. M. Tufo, 2016: Dynamical Core Model Intercomparison Project (DCMIP) Tracer Transoprt Test Results for CAM-SE. Quart. J. Roy. Meteor. Soc., 142, 1672–1687.CrossRefGoogle Scholar
  16. Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830.CrossRefGoogle Scholar
  17. Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481–1496.CrossRefGoogle Scholar
  18. Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621–2639.CrossRefGoogle Scholar
  19. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.CrossRefGoogle Scholar
  20. Hong, S.-Y., H. Park, H.-B. Cheong, J.-E. E. Kim, and co-authors, 2013: The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219–243.CrossRefGoogle Scholar
  21. Hundsdorfer, W., B. Koren, M. van Loon, and K. G. Verwer, 1995: A positive finite-difference advection scheme. J. Comput. Phys., 117, 35–46.CrossRefGoogle Scholar
  22. Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instabilitiy test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943–2975.CrossRefGoogle Scholar
  23. Kelly, J. F., and F. X. Giraldo, 2012: Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode. J. Comput. Phys., 231, 7988–8008.CrossRefGoogle Scholar
  24. Kent, J, P. A. Ullrich, and C. Jablonowski, 2014: Dynamical core model intercomparison project: Tracer transport test cases. Quart. J. Roy. Meteor. Soc., 140, 1279–1293.CrossRefGoogle Scholar
  25. Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative splitexplicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 2897–2913.CrossRefGoogle Scholar
  26. Lauritzen, P. H., C. Jablonowski, M. A. Taylor, and R. D. Nair, 2010: Rotated versions of the Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.15.Google Scholar
  27. Nair, R. D., S. J. Thomas, and R. D. Loft, 2005a: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 133, 814–828.CrossRefGoogle Scholar
  28. Nair, R. D., S. J. Thomas, and R. D. Loft, 2005b: A discontinuous Galerkin global shallow water model. Mon. Wea. Rev., 133, 876–888.CrossRefGoogle Scholar
  29. Nair, R. D., H.-W. Choi, and H. M. Tufo, 2009: Computational aspect of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Comput. Fluids, 38, 309–319.CrossRefGoogle Scholar
  30. Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Japan, 85, 151–169.CrossRefGoogle Scholar
  31. Park, S.-H., W. C. Skamarock, J. B. Klemp, L. D. Fowler, and M. G. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Mon. Wea. Rev., 141, 3116–3129.CrossRefGoogle Scholar
  32. Ran i, M., J. Purser, and F. Mesinger, 1996: A global shallow water model using an expanded spherical cube: gnomonic versus conformal coordinates. J. Roy. Meteor. Soc., 122, 959–982.CrossRefGoogle Scholar
  33. Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136–144.CrossRefGoogle Scholar
  34. Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 3486–3514.CrossRefGoogle Scholar
  35. Skamarock, W. C., 2004: Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra. Mon. Wea. Rev., 132, 3019–3032.CrossRefGoogle Scholar
  36. Skamarock, W. C., and J. B. Klemp, 1992: The Stability of Time-Split Numerical Methods for the Hydrostatic and the Nonhydrostatic Elastic Equations. Mon. Wea. Rev., 120, 2109–2127.CrossRefGoogle Scholar
  37. Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485.CrossRefGoogle Scholar
  38. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A desciption of the advanced research WRF version 3. NCAR Tech. Note TN-475+STR.Google Scholar
  39. Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multi-scale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 240, 3090–3105.CrossRefGoogle Scholar
  40. Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92–108.CrossRefGoogle Scholar
  41. Taylor, M. A., A. St. Cyr, and A. Fournier, 2009: A non-oscillatory advection operator of the compatible spectral element method. Comutational Science-ICCS 2009, Part II, G. Allen et al., Eds., Springer Berlin Heidelberg, 273–282.CrossRefGoogle Scholar
  42. Taylor, M. A., J. Edwards, S. Thomas, and R. D. Nair, 2007: A mass and energy conserving spectral element atmospheric dynamical core on the cubedsphere grid. J. Phys. Conf. Ser., 78, 012074, doi:10.1088/1742-6596/78/1/012074.CrossRefGoogle Scholar
  43. Thomas, S. J., and R. D. Loft, 2002: Semi-implicit spectral element atmospheric model. J. Sci. Comput., 17, 339–350.CrossRefGoogle Scholar
  44. Tumolo, G., and L. Bonaventura, 2015: A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction. Quart. J. Roy. Meteor. Soc., 141, 2582–2601.CrossRefGoogle Scholar
  45. Ullrich, P. A., and C. Jablonowski, 2012: MCore: a non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods. J. Comput. Phys., 231, 5078–5108.CrossRefGoogle Scholar
  46. Ullrich, P. A., C. Jablonowski, and B. L. van Leer, 2010: High-order finite-volume models for the shallow-water equations on the sphere. J. Comput. Phys., 229, 6104–6134.CrossRefGoogle Scholar
  47. Ullrich, P. A., C. Jablonowski, J. Kent, P. H. Lauritzen, R. D. Nair, and M. A. Taylor, 2012: Dynamical Core Model Intercomparison Project (DCMIP) Test Case Document. [Available online at https://www.earthsystemcog.org/site_media/docs/DCMIP-TestCaseDocument_v1.7.pdf].Google Scholar
  48. Wan, H., M. A. Giorgetta, and L. Bonaventura, 2008: Ensemble Held-Suarez test with a spectral transform model: Variability, Sensitivity, and Convergence. Mon. Wea. Rev., 136, 1075–1092.CrossRefGoogle Scholar
  49. Wedi, N. P., and P. K. Smolarkiewicz, 2009: A framework for testing global non-hydrostatic models. Quart. J. Roy. Meteor. Soc., 135, 469–484.CrossRefGoogle Scholar
  50. Wedi, N. P., K. Yessad, and A. Untch, 2009: The nonhydrostatic global IFS/ARPEGE: model formulation and testing. Technical Memorandum, No. 594, European Centre for Medium-Range Weather Forecasts, 36 pp.Google Scholar
  51. Wood, N., and Coauthors, 2014: An inherently mass-conserving semiimplicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 1505–1520.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Korea Institute of Atmospheric Prediction SystemsSeoulKorea

Personalised recommendations