Advertisement

Asia-Pacific Journal of Atmospheric Sciences

, Volume 52, Issue 1, pp 63–75 | Cite as

Diurnal and seasonal variations of meteorology and aerosol concentrations in the foothills of the nepal himalayas (Nagarkot: 1,900 m asl)

  • Rudra K. ShresthaEmail author
  • Martin W. Gallagher
  • Paul J. Connolly
Article

Abstract

A 10-months long monitoring experiment to investigate the diurnal and seasonal variation of aerosol size distribution at Nagarkot (1,900 m asl) in the Kathmadu Valley was carried out as part of a study on katabatic and anabatic influence on pollution dispersion mechanisms. Seasonal means show total aerosol number concentration was highest during post-monsoon season (775 ± 417 cm−3) followed by pre-monsoon (644 ± 429 cm−3) and monsoon (293 ± 205 cm−3) periods. Fine particle concentration (0.25 μm ≤ DP ≤ 2.5 μm) dominated in all seasons, however, contribution by coarse particles (3.0 μm ≤ DP ≤ 10.0 μm) is more significant in the monsoon season with contributions from particles larger than 10.0 μm being negligible. Our results show a regular diurnal pattern of aerosol concentration in the valley with a morning and an evening peak. The daily twin peaks are attributed to calm conditions followed by transitional growth and break down of the valley boundary layer below. The peaks are generally associated with enhancement of the coarse particle fraction. The evening peak is generally higher than the morning peak, and is caused by fresh evening pollution from the valley associated with increased local activities coupled with recirculation of these trapped pollutants. Relatively clean air masses from neighbouring valleys contribute to the smaller morning peak. Gap flows through the western passes of the Kathmandu Valley, which sweep away the valley pollutants towards the eastern passes modulated by the mountain - valley wind system, are mainly responsible for the dominant pollutant circulation patterns exhibited within the valley.

Key words

Himalayas aerosol Kathmandu Valley mountain-valley circulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADB/ICIMOD, 2006: Environment Assessment of Nepal: Emerging Issues and Challenges. Asian Development Bank / International Centre for Integrated Mountain Development (ICIMOD), 225 pp.Google Scholar
  2. Akimoto, H., 2003: Global air quality and pollution. Science, 302, 1716–1719.CrossRefGoogle Scholar
  3. Alford, D., 1992: Hydrological Aspects of the Himalayan Region. ICIMOD, 81 pp.Google Scholar
  4. Aryal, R. K., B.-K. Lee, R. Karki, A. Gurung, J. Kandasamy, B. K. Pathak, S. Sharma, and N. Giri, 2008: Seasonal PM10 dynamics in Kathmandu Valley. Atmos. Environ., 42, 8623–8633.CrossRefGoogle Scholar
  5. Beniston, M., 1987: A numerical study of atmospheric pollution over complex terrain in Switzerland. Bound-Lay. Meteorol., 41, 75–96.CrossRefGoogle Scholar
  6. Brulfert, G., C. Chemel, E. Chaxel, J. P. Chollet, B. Jouve, and H. Villard, 2006: Assessment of 2010 air quality in two Alpine valleys from modelling: Weather type and emission scenarios. Atmos. Environ., 40, 7893–7907.CrossRefGoogle Scholar
  7. Carrico, C. M., M. H. Bergin, A. B. Shrestha, J. E. Dibb, L. Gomes, and J. M. Harris, 2003: The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmos. Environ., 37, 2811–2824.CrossRefGoogle Scholar
  8. Deshmukh, D. K., and M. K. Deb, 2013: Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India. Air Qual. Atmos. Health, 6, 259–276.CrossRefGoogle Scholar
  9. Gautam, R., and Coauthors, 2011: Accumulation of aerosols over the Indo- Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmos. Chem. Phy., 11, 12841–12863.CrossRefGoogle Scholar
  10. Grigoras, G., V. Cuculeanu, G. Ene, G. Mocioaca, and A. Deneanu, 2012: Air pollution dispersion modeling in a polluted industrial area of complex terrain from Romania. Rom. Rep. Phys., 64, 173–186.Google Scholar
  11. Guo, J., S. Kang, J. Huang, Q. Zhang, L. Tripathee, and M. Sillanpaa, 2015: Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa. Atmos. Res., 153, 87–97.CrossRefGoogle Scholar
  12. Gurung, A., and M. L. Bell, 2013: The state of scientific evidence on air pollution and human helath in Nepal. Environ. Res., 124, 54–64.CrossRefGoogle Scholar
  13. Hindman, E. E., and B. P. Upadhayay, 2002: Air pollution transport in the Himalayas of Nepal and Tibet during the 1995-1996 dry season. Atmos. Environ., 36, 727–739.CrossRefGoogle Scholar
  14. Kajino, M., W. Winiwarter, and H. Ueda, 2006: Modeling retained water concent in measured aerosol mass. Atmos. Environ., 40, 5202–5213.CrossRefGoogle Scholar
  15. Kan, H., and B. Chen, 2004: Particulate air pollution in urban areas of Shanghai, China: health-based economic assessment. Sci. Total Environ., 322, 71–79.CrossRefGoogle Scholar
  16. Kim, D., and W. R. Stockwell, 2007: An online coupled meteorological and air quality modeling study of the effect of complex terrain on the regional transport and transformation of air pollutants over the Western United States. Atmos. Environ., 41, 2319–2334.CrossRefGoogle Scholar
  17. Liao, J., T. Wang, Z. Jiang, B. Zhuang, M. Xie, C. Yin, X. Wang, J. Zhu, Y. Fu, and Y. Zhang, 2015: WRF/Chem modeling of the impacts of urban expansion on regional climate and air pollutants in Yangtze Delta, China. Atmos. Environ., 106, 204–214.CrossRefGoogle Scholar
  18. Marinoni, A., and Coauthors, 2010: Aerosol mass and black carbon concentration, a two year record at NCO-P (5079 m, Southern Himalayas). Atmos. Chem. Phy., 10, 8551–8562.CrossRefGoogle Scholar
  19. Martilli, A., and D. G. Steyn, 2004: A Numerical Study of Recirculation Processes in the Lower Fraser Valley (British Columbia, Canada). Air Pollution Modelling and Its Application XVII, Banff, 727 pp.Google Scholar
  20. Miao, Y., S. Liu, Y. Zheng, S. Wang, and B. Chen, 2015: Numerical study of the effects of topography and urbanization on the local atmospheric circulations over the Beijing-Tianjin-Hebei, China. Adv. Meteorol., 2015, http://dx.doi.org/10.1155/2015/397070.Google Scholar
  21. Min, H., J. Jing, and W. Zhijun, 2005: Chemical compositions of precipitation and scavenging of particles in Beijing. Sci. China Ser. B., 48, 265–272.CrossRefGoogle Scholar
  22. Nakajima, C., 1976: Movement and development of the clouds over Khumbu Himal in winter. Seppyo, 38, 89–92.Google Scholar
  23. Panday, A. K., 2006: The Diurnal Cycle of Air Pollution in the Kathmandu Valley, Nepal. Ph.D. Thesis, Center for Global Change Science, Massachusetts Institute of Technology, 234 pp.Google Scholar
  24. Panday, A. K., and R. G. Prinn, 2009: Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations. J. Geophys. Res., 114.Google Scholar
  25. Panday, A. K., R. G. Prinn, and C. Schar, 2009: Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results. J. Geophys. Res., 114.Google Scholar
  26. Putero, D., and Coauthors, 2015: Seasonal variation of ozone and black carbon observed at Pakanjol, an urban site in the Kathmandu Valley, Nepal. Atmos. Chem. Phy. Discuss., 15, 22527–22566.CrossRefGoogle Scholar
  27. Radke, L. F., P. V. Hobbs, and M. W. Eltgroth, 1980: Scavenging of Aerosol particles by precipitation. J. Appl. Meteor., 19, 715–722.CrossRefGoogle Scholar
  28. Regmi, R. P., T. Kitada, and G. Kurata, 2002: Numerical Simulation of Late Wintertime Local Flows in Kathmandu Valley, Nepal: Implication for Air Pollution Transport. J. Appl. Meteor., 42, 389–403.CrossRefGoogle Scholar
  29. Reid, J. D., 1978: Studies of pollutant transport and turbulent dispersion over rugged Mountainous terrain near Climax, Colorado. Atmos. Env., 13, 23–28.CrossRefGoogle Scholar
  30. Saha, A., and K. K. Moorthy, 2004: Impact of Precipitation on Aerosol Spectral Optical Depth and Retrieved Size Distributions: A Case Study. J. Appl. Meteor., 43, 902–914.CrossRefGoogle Scholar
  31. Segal, M., C.-H. Yu, and R. A. Pielke, 1988: Model Evaluation of the Impact of Thermally Induced Valley Circulation in the Lake Powell Area on Long-Range Pollutant Transport. JAPCA, 38, 163–170.CrossRefGoogle Scholar
  32. Sellegri, K., P. Laj, H. Venzac, J. Boulon, D. Picard, P. Villani, P. Bonasoni, A. Marinoni, P. Cristofanelli, and E. Vuillermmoz, 2010: Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory- Pyramid (5,079 m), Nepal. Atmos. Chem. Phy., 10, 6537–6566.CrossRefGoogle Scholar
  33. Shrestha, A. B., C. P. Wake, P. A. Mayewski, and J. E. Dibb, 1999: Maximum Temperature Trends in the Himalaya and Its Vicinity: An Analysis Based on Temperature Records from Nepal for the Period 1971-94. J. Climate, 12, 2775–2786.CrossRefGoogle Scholar
  34. Shrestha, A. B., C. P. Wake, J. E. Dibb, P. A. Mayewski, S. I. Whitlow, G. R. Carmichael, and M. Ferm, 2000: Seasonal variations in aerosol concentrations and compositions in the Nepal Himalaya. Atmos. Environ., 34, 3349.CrossRefGoogle Scholar
  35. Shrestha, A. B., C. P. Wake, J. E. Dibb, and S. I. Whitlow, 2002: Aerosol and Precipitation Chemistry at a Remote Himalayan Site in Nepal. Aerosol Sci. Technol., 36, 441–456.CrossRefGoogle Scholar
  36. Shrestha, M. L., 2000: Interannual variation of summer monsoon rainfall over Nepal and its relation to Southern Oscillation Index. Meteorol. Atmos. Phys., 75, 21–28.CrossRefGoogle Scholar
  37. Shrestha, P., and A. P. Barros, 2010: Joint spatial variability of aerosol, clouds and rainfall in the Himalayas from satellite data. Atmos. Chem. Phy., 10, 8305–8317.CrossRefGoogle Scholar
  38. Shrestha, P., A. P. Barros, and A. Khlystov, 2010: Chemical composition and aerosol size distribution of the middle mountain range in the Nepal Himalayas during the 2009 pre-monsoon season. Atmos. Chem. Phy., 10, 11605–11621.CrossRefGoogle Scholar
  39. Thapa, R. B., and Y. Murayama, 2011: Urban growth modeling of Kathmandu metropolitan region, Nepal. Comput. Environ. Urban Syst., 35, 25–34.CrossRefGoogle Scholar
  40. Venzac, H., and Coauthors, 2008: High frequency new particle formation in the Himalayas. Proc. Natl. Acad. Sci., 105, 15666–15671.CrossRefGoogle Scholar
  41. Whiteman, C. D., 2000: Mountain Meteorology. Oxford University Press, 355 pp.Google Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rudra K. Shrestha
    • 1
    • 2
    • 3
    Email author
  • Martin W. Gallagher
    • 1
  • Paul J. Connolly
    • 1
  1. 1.Centre for Atmospheric ScienceSchool of Earth, Atmospheric and Environmental Sciences, The University of ManchesterManchesterUK
  2. 2.Sustainable Consumption Institute (SCI)The University of ManchesterManchesterUK
  3. 3.Canadian Centre for Climate Modelling and AnalysisEnvironment and Climate Change Canada, University of VictoriaVictoriaCanada

Personalised recommendations