Advertisement

Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment

  • Jayanti Pal
  • Sutapa Chaudhuri
  • Arumita Roy Chowdhury
  • Tanuka Bandyopadhyay
Article

Abstract

The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.

Key words

Lightning aerosol land ocean precipitation rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, B., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 1227–1230.CrossRefGoogle Scholar
  2. Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543–556.CrossRefGoogle Scholar
  3. Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342.CrossRefGoogle Scholar
  4. Benmoshe, N., and A. P. Khain, 2014: The effects of turbulence on the microphysics of mixed-phase deep convective clouds investigated with a 2-D cloud model with spectral bin microphysics. J. Geophys. Res-Atmos., 119, 207–221.CrossRefGoogle Scholar
  5. Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802–822.CrossRefGoogle Scholar
  6. Boccippio, D. J., and S. J. Goodman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteorol., 39, 2231–2248.CrossRefGoogle Scholar
  7. Boccippio, D. J., C. Wong, E. R. Williams, R. Boldi, H. Christian, and S. J. Goodman, 1998: Global validation of single station Schumann resonance lightning location. J. Atmos. Sol-Terr. Phy., 60, 701–722.CrossRefGoogle Scholar
  8. Breon, F. M., D. Tanre, and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295, 834–838.CrossRefGoogle Scholar
  9. Chaudhuri, S., and A. Middey, 2013: Effect of meteorological parameters and environmental pollution on thunderstorm and lightning activity over an urban metropolis of India. Urban Clim., 3, 67–75.CrossRefGoogle Scholar
  10. Christian, H. J., and Coauthors, 1999: Global frequency and distribution of lightning as observed by the Optical Transient Detector (OTD). Proc. 11th Int. Conf. Atmos. Electricity, NASA, Guntersville, 726–729.Google Scholar
  11. Chronis, T. G., S. J. Goodman, D. Cecil, D. Buechler, F.J. Robertson, J. Pittman, 2008: Global lightning activity from the ENSO perspective. Geophys. Res. Lett., 35, L19804.CrossRefGoogle Scholar
  12. Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteorol. Soc., 137, 1–28.CrossRefGoogle Scholar
  13. Feingold, G., W. Eberhard, D. Veron, and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30, 1287, doi:10.1029/2002GL016633,2003.Google Scholar
  14. Fullekrug, M., C. Price, Y. Yair, and E. R. Williams, 2002: Intense oceanic lightning. Ann. Geophys., 20, 133–137.CrossRefGoogle Scholar
  15. Gauthier, M. L., W. A. Petersen, L. D. Carey, and H. J. Christian Jr., 2006: Relationship between cloud-to-ground lightning and precipitation ice mass: a radar study over Houston. Geophys. Res. Lett., 33, L20803.CrossRefGoogle Scholar
  16. Hidayat, S., and M. Ishii, 1998: Spatial and temporal distribution of lightning activity around Java. J. Geophys. Res., 103(D12), 14001–14009.CrossRefGoogle Scholar
  17. Kandalgaonkar, S. S., J. R. Kulkarni, M. I. R. Tinmaker, and M. K. Kulkarni, 2010: Land-ocean contrasts in lightning activity over the Indian region. Int. J. Climatol., 30, 137–145.Google Scholar
  18. Kar, S. K., and Y. A. Liou, 2014: Analysis of cloud-to-ground lightning and its relation with surface pollutants over Taipei, Taiwan. Ann. Geophys., 32, 1–8.CrossRefGoogle Scholar
  19. Kar, S. K., Y. A. Liou, and K. J. Ha, 2009: Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res., 92, 80–87.CrossRefGoogle Scholar
  20. Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.CrossRefGoogle Scholar
  21. Lee, H., J. J. Baik, and J. Y. Han, 2014: Effects of turbulence on mixedphase deep convective clouds under different basic-state winds and aerosol concentrations. J. Geophys. Res-Atmos., 119, 13506–13525.CrossRefGoogle Scholar
  22. Lelieveld, J., and Coauthors, 2001: The Indian Ocean experiment: widespread air pollution from South and South-East Asia. Science, 291, 1031–1036.CrossRefGoogle Scholar
  23. Liu, D. X., X. S. Qie, Y. J. Xiong, and G. L. Feng, 2011: Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. Adv. Atmos. Sci., 28, 866–878.CrossRefGoogle Scholar
  24. Liu, Z., D. Ostrenga, W. Teng, and S. Kempler, 2012: Tropical Precipitation Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Am. Meteorol. Soc., 93, 1317–1325.CrossRefGoogle Scholar
  25. MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–251.CrossRefGoogle Scholar
  26. Massie, S. T., O. Torres, and S. J. Smith, 2004: Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000. J. Geophys. Res., 109, D18211.CrossRefGoogle Scholar
  27. Middey, A., and S. Chaudhuri, 2013: The reciprocal relation between lightning and pollution and their impact over Kolkata, India. Environ. Sci. Pollut. Res., 20, 3133–3139.CrossRefGoogle Scholar
  28. Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: December 1977 to August 1978. Mon. Wea. Rev., 114, 2640–2653.CrossRefGoogle Scholar
  29. Orville, R. E., G. Huffines, J. Nielsen-Gammon, R. Zhang, B. Ely, S. M. Steiger, S. Phillips, S. Allen, W. Read, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 2597–2600.CrossRefGoogle Scholar
  30. Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103, 14025–14040.CrossRefGoogle Scholar
  31. Pinto, Jr. O., I. R. C. A. Pinto, and K. P. Naccarato, 2007: Maximum cloud to ground lightning flash densities observed by lightning location systems in the tropical region: A Review. Geophys. Res. Lett., 84, 189–200.Google Scholar
  32. Platnick, S., M. D. King, S. A. Ackerman, W. P. Menze, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: algorithms and examplesfrom terra. IEEE T Geosci Remote, 41, 459–473.CrossRefGoogle Scholar
  33. Qie, X. S., C. M. Guo, M. H. Yan, and G. S. Zhang, 1993: Lightning data and study of thunderstorm nowcasting. Acta Meteorol. Sin., 7, 244–256.Google Scholar
  34. Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Atmosphere, climate, and the hydrological cycle. Science, 294, 2119–2124.CrossRefGoogle Scholar
  35. Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.CrossRefGoogle Scholar
  36. Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 304 pp.Google Scholar
  37. Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: a comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744–755.CrossRefGoogle Scholar
  38. Singh, D., A. K. Singh, R. P. Patel, R. P. Singh, B. Venadhari, and M. Mukherjee, 2008: Thunderstorm, lightning, sprites and magnetospheric whistler mode radio wave. Surv. Geophys., 29, 499–551.CrossRefGoogle Scholar
  39. Snee, R. D., and C. G. Pfeifer, 2006: Histograms. Encyclopedia. Stat. Sci., doi:10.1002/0471667196.ess0952.pub2.Google Scholar
  40. Stallins, J. A., M. L. Bentley, and L. S. Rose, 2006: Cloud-to-ground patterns for Atlanta, Georgia (USA) from 1992 to 2003. Clim. Res., 30, 99–112.CrossRefGoogle Scholar
  41. Tang, J., P. Wang, L. J. Mickley, X. Xia, H. Hong Liao, X. Yue, L. Sun, J. Xia, 2014: Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data. Atmos. Environ., 84, 244–253.CrossRefGoogle Scholar
  42. Turman, B. N., and B. C. Edgar, 1982: Global lightning distributions at dawn and dusk. J. Geophys. Res., 87, 1191–1206.CrossRefGoogle Scholar
  43. Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152.CrossRefGoogle Scholar
  44. Ushio, T., S. J. Heckman, D. J. Boccippio, H. J. Christian, Z. I. Kawasaki, 2001: A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res., 106, 24089–24095.CrossRefGoogle Scholar
  45. van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol., 46, 828–850.CrossRefGoogle Scholar
  46. van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiativeconvective equilibrium. J. Atmos. Sci., 68, 699–718.CrossRefGoogle Scholar
  47. van den Heever, S. C., G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida convection. Part I: mesoscale simulations. J. Atmos. Sci. 63, 1752–1775.CrossRefGoogle Scholar
  48. Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200.CrossRefGoogle Scholar
  49. Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000: supercell observed during STEPS. Part II: lightning and charge structure. J. Atmos. Sci., 62, 4151–4177.CrossRefGoogle Scholar
  50. Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. International Geophysics, Academic Press, 704 pp.Google Scholar
  51. Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res, 94, 13151–13167.CrossRefGoogle Scholar
  52. Williams, E. R., and S. Stanfill, 2002: The physical origin of the land-ocean contrast in lightning activity. C. R. Phys., 3, 1277–1292.CrossRefGoogle Scholar
  53. Williams, E. R., T. Chan, and D. Boccippio, 2004: Islands as miniature continents: another look at the land-ocean contrast. J. Geophys. Res., 109, D16210, doi:10.1029/2003JD003833.CrossRefGoogle Scholar
  54. Williams, E. R., K. Rothkin, D. Stevenson, and D. Boccippio, 2000: Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Met., 39, 2223–2230.CrossRefGoogle Scholar
  55. Williams, E. R., D. Rosenfeld, N. Madden, C. Labrada, J. Gerlach, and L. Atkinson, 1999: The role of boundary layer aerosol in the vertical development of precipitation and electrification: another look at the contrast between lightning over land and over ocean. Preprints, 11th Int. Conf. Atmos. Electricity, Guntersville, AL, 754–757.Google Scholar
  56. Williams, E. R., S. A. Rutledge, S. G. Geotis, N. O. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 1386–1395.CrossRefGoogle Scholar
  57. Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: implications for cloud electrification. J. Geophys. Res., 107, D20, doi:10.1029/2001JD000380.Google Scholar
  58. Yuan, T., L. A. Remer, K. E. Pickering, and H. Yu, 2011: Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38, L04701.Google Scholar
  59. Ziegler, C. L., D. R. MacGorman, P. S. Ray, and J. E. Dye, 1991: A model evaluation of non inductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12833–12855.CrossRefGoogle Scholar
  60. Zipser, E., and K. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 1751–1759.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jayanti Pal
    • 1
  • Sutapa Chaudhuri
    • 1
  • Arumita Roy Chowdhury
    • 1
  • Tanuka Bandyopadhyay
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of CalcuttaKolkataIndia

Personalised recommendations