Changes in weather and climate extremes over Korea and possible causes: A review

  • Seung-Ki Min
  • Seok-Woo Son
  • Kyong-Hwan Seo
  • Jong-Seong Kug
  • Soon-Il An
  • Yong-Sang Choi
  • Jee-Hoon Jeong
  • Baek-Min Kim
  • Ji-Won Kim
  • Yeon-Hee Kim
  • June-Yi Lee
  • Myong-In Lee


Weather and climate extremes exert devastating influence on human society and ecosystem around the world. Recent observations show increase in frequency and intensity of climate extremes around the world including East Asia. In order to assess current status of the observed changes in weather and climate extremes and discuss possible mechanisms, this study provides an overview of recent analyses on such extremes over Korea and East Asia. It is found that the temperature extremes over the Korean Peninsula exhibit long-term warming trends with more frequent hot events and less frequent cold events, along with sizeable interannual and decadal variabilities. The comprehensive review on the previous literature further suggests that the weather and climate extremes over East Asia can be affected by several climate factors of external and internal origins. It has been assessed that greenhouse warming leads to increase in warm extremes and decrease in cold extremes over East Asia, but recent Arctic sea-ice melting and associated warming tends to bring cold snaps to East Asia during winter. Internal climate variability such as tropical intraseasonal oscillation and El Niño-Southern Oscillation can also exert considerable impacts on weather and climate extremes over Korea and East Asia. It is, however, noted that our current understanding is far behind to estimate the effect of these climate factors on local weather and climate extremes in a quantitative sense.

Key words

Weather extremes climate extremes climate variability and change Korea and East Asia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn J.-B., J.-H. Ryu, E.-H. Cho, J.-Y. Park, and S.-B. Rhoo, 1997: A study on correlation between air-temperature and precipitation in Korea and SST over the tropical pacific. J. Korean Meteor. Soc., 33, 487–495. (in Korean with English abstract)Google Scholar
  2. Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890–905, doi:10.1175/1520-0442CrossRefGoogle Scholar
  3. Allen, M., and W. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 429, 224–232.CrossRefGoogle Scholar
  4. —, and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting. Part I: Theory. Clim. Dynam., 21, 477–491.Google Scholar
  5. An, S.-I., J.-S. Kug, Y.-G. Ham, and I.-S. Kang, 2008: Successive modulation of ENSO to the future greenhouse warming. J. Climate, 21, 3–21.CrossRefGoogle Scholar
  6. Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification 1 to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 1–6, doi: 10.1002/grl.50880.CrossRefGoogle Scholar
  7. Bindoff, N. L., and Coauthors, 2013: Detection and Attribution of Climate Change: from Global to Regional. Climate Change 2013: The Physical Science Basis. Contribution of WGI to the AR5 of the IPCC, Stocker, T.F., et al. Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  8. Boo, K.-O., W.-T. Kwon, and H.-J. Baek, 2006: Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys. Res. Letter, 33, L01701, doi:  10.1029/2005GL023378.Google Scholar
  9. —, —, J.-H. Oh, and H.-J. Baek, 2004: Response of global warming on regional climate change over Korea: An experiment with the MM5 model. Geophys. Res. Lett., 31, L21206, doi: 10.1029/2004GL021171.CrossRefGoogle Scholar
  10. Cai, W.-J. and Coauthors, 2014: Increasing frequency of extreme El Ni?o events due to greenhouse warming. Nat. Clim. Change, 4, 111–116.CrossRefGoogle Scholar
  11. Cha E.-J., J.-G. Jhun, and H.-S. Chung, 1999: A study of characteristics of climate in South Korea for El Niño/La Niña year. J. Korean Meteor. Soc., 35, 98–117. (in Korean with English abstract)Google Scholar
  12. Chang, H.-J., and W.-T. Kwon, 2007: Spatial variations of summer precipitation trends in South Korea, 1973–2005. Environ. Res. Lett., 2, 1–9, doi: 10.1088/1748-9326/2/4/04512.CrossRefGoogle Scholar
  13. Choi, E.-S., and I.-J. Moon, 2008: The variation of extreme values in the precipitation and wind speed during 56 years in Korea. Atmosphere, 18, 397–416. (In Korean with English abstract)Google Scholar
  14. Choi, G., W.-T. Kwon, K.-O. Boo, and Y.-M. Cha, 2008: Recent spatial and temporal changes in means and extreme events of temperature and precipitation across the Republic of Korea. J. Korean Geogr. Soc., 43, 681–700.Google Scholar
  15. Choi, Y., 2004: Trends on temperature and precipitation extreme events in Korea. J. Korean Geogr. Soc., 39, 711–721.Google Scholar
  16. Choi, Y.-S., C.-H. Ho, D.-Y. Gong, J.-H. Jeong, and T.-W. Park, 2009: Adaptive change in intra-winter distribution of relatively cold events to East Asian warming. Terr. Atmos. Oceanic. Sci., 20, 807–816.CrossRefGoogle Scholar
  17. Chung, Y.-S., M.-B. Yoon, and H.-S. Kim, 2004: On climate variations and changes observed in South Korea. Climatic Change, 66, 151–161.CrossRefGoogle Scholar
  18. Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009–2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37, doi: 10.1029/2010gl044256.
  19. —, J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012a: Asymmetric seasonal temperature trends. Geophys. Res. Lett., 39, L04705.Google Scholar
  20. —, —, —, —, and —, 2012b: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 14007, doi: 10.1088/1748-9326/7/1/014007.CrossRefGoogle Scholar
  21. —, and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627–637, doi: 10.1038/ngeo2234.CrossRefGoogle Scholar
  22. Coumou, D., and A. Robinson, 2013: Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett., 8, 034018, doi:10.1088/1748-9326/8/3/034018.CrossRefGoogle Scholar
  23. —, V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber 2014: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci., doi: 10.1073/pnas.1412797111.Google Scholar
  24. Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twentyfirst century. J. Climate, 23, 333–351, doi: 10.1175/2009JCLI3053.1.CrossRefGoogle Scholar
  25. Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian summer monsoon. J. Climate, 20, 3751–3767.CrossRefGoogle Scholar
  26. —, —, J. M. Wallace, and G. Branstator, 2011b: Tropical-extratropical teleconnections in boreal summer: observed interannual variability. J. Climate, 24, 1878–1896.CrossRefGoogle Scholar
  27. Ding, R., J. Li, and K.-H. Seo, 2010: Predictability of the Madden-Julian Oscillation estimated using observational data. Mon. Wea. Rev., 138, 1004–1013.CrossRefGoogle Scholar
  28. —, —, and —, 2011a: Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon. Wea. Rev., 139, 2421–2438.CrossRefGoogle Scholar
  29. Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J Geophys. Res.: Atmos, 118, 2098–2118.CrossRefGoogle Scholar
  30. Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling?. Geophys. Res. Lett. 36, L08706.CrossRefGoogle Scholar
  31. Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, doi: 10.1029/2012gl051000.
  32. Franzke, C., 2013: A novel method to test for significant trends in extreme values in serially dependent time series. Geophy. Res. Lett., 40, 1392–1395.CrossRefGoogle Scholar
  33. Ha, K.-J., and K.-S. Yun, 2012: Climate change effects on tropical night days in Seoul, Korea. Theor. Appl. Climatol., 109, 191–203.CrossRefGoogle Scholar
  34. —, E.-H. Ha, C.-S. Yoo, and E.-H. Jeon, 2004: Temperature trends and extreme climate since 1909 at big four cities of Korea. J. Korean Meteor. Soc., 40, 1–16. (In Korean with English abstract )Google Scholar
  35. —, J.-E. Chu, J.-Y. Lee, B. Wang, S. N Hameed, and M. Watanabe, 2012: What caused the cool summer over northern Central Asia, East Asia, and central North America during 2009?. Environ. Res. Lett., 7, 44015.CrossRefGoogle Scholar
  36. Han, S.-D., and K.-H. Seo, 2009: East Asian precipitation and circulation response to the Madden-Julian Oscillation. J. Korean Earth Sci. Soc., 30, 282–293.CrossRefGoogle Scholar
  37. Heo, I., and Lee, S., 2006: Changes of unusual temperature events and their controlling factors in Korea. J. Korean Geogr. Soc., 41, 94–105. (In Korean with English abstract)Google Scholar
  38. Herring, S. C., M. P. Hoerling, T. C. Peterson, and P. A. Stott, Eds., 2014: Explaining extreme events of 2013 from a climate perspective. Bull. Amer. Meteor. Soc., 95, S1–S96.CrossRefGoogle Scholar
  39. Ho, C.-H., J.-Y. Lee, M.-H. Ahn, and H.-S. Lee, 2003: A sudden change in summer rainfall characteristics in Korea during the late 1970s. Int. J. Climatol., 23, 117–128CrossRefGoogle Scholar
  40. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi: 10.1029/2008gl037079.CrossRefGoogle Scholar
  41. Hopsch, S., J. Cohen, and K. Dethloff, 2012: Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A. 64, doi: 10.3402/tellusa.v64i0.18624.
  42. Im, E.-S., and W.-T. Kwon, 2007: Characteristics of extreme climate sequences over Korea using a regional climate change scenario. Sci. Online Lett. Atmos., 3, 017–020Google Scholar
  43. Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a Warm-Arctic Cold-Siberian Anomaly. J. Climate, 25, 2561–2568, doi: 10.1175/jcli-d-11-00449.1.CrossRefGoogle Scholar
  44. IPCC, 2012: Summary for Policymakers. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Field, C. B., et al. eds., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 1-19 pp.Google Scholar
  45. —, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  46. Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A., 64, doi: 10.3402/tellusa.v64i0.11595.
  47. Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res., 110, D11104.CrossRefGoogle Scholar
  48. —, B.-M. Kim, C.-H. Ho, and Y.-H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788–801.CrossRefGoogle Scholar
  49. Jung, H. S., Y. Choi, J. H. Oh, and G. H. Lim, 2002: Recent trends in temperature and precipitation over South Korea. Int. J. Climatol., 22, 1327–1337.CrossRefGoogle Scholar
  50. Jung, I.-W., D.-H. Bae, and G. Kim, 2011: Recent trends of mean and extreme precipitation in Korea. Int. J. Climatol., 31, 359–370.CrossRefGoogle Scholar
  51. Kang I.-S., 1998: Relationship between El Niño and climate variation over Korea peninsula. J. Korean Meteor. Soc., 34, 390–396. (in Korean with English abstract)Google Scholar
  52. —, C. H. Ho, Y. K. Lim, and K. M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322–340.CrossRefGoogle Scholar
  53. Kang, Y. Q., and C.-S. Rho, 1985: Annual and interannual fluctuations of air temperature in Korea during the past 30 years (1954–1983). Asia-Pac. J. Atmos. Sci., 21, 1–10. (In Korean with English abstract)Google Scholar
  54. Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 2923–2942.CrossRefGoogle Scholar
  55. Kim, B.-M, G.-H. Lim, and K.-Y. Kim, 2006: A new look at the mid latitude-MJO teleconnection in the Northern Hemisphere winter. Quart. J. Roy. Meteor. Soc., 132, 485–503.CrossRefGoogle Scholar
  56. —, E. Jung, G. Lim, and H. Kim, 2014c: Analysis on winter atmosphereic variability related to Arctic warming. Atmosphere, 24, 131–140. (In Korean with English abstract)CrossRefGoogle Scholar
  57. —, S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014d: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi: 10.1038/ncomms5646.CrossRefGoogle Scholar
  58. Kim, H., Y.-S. Choi, and J.-H. Kim, 2014b: Characteristics of northern hemispheric wintertime cold extremes for 1951–2011 as revealed by a Markov chain analysis. J. Climate., submitted.Google Scholar
  59. Kim, M.-K., I.-S. Kang, and C.-H. Kwak, 1999: The estimation of urban warming amounts due to urbanization in Korea for the recent 40 years. Asia-Pac. J. Atmos. Sci., 35, 118–126. (In Korean with English abstract)Google Scholar
  60. Kim, S.-T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014e: Response of El Ni?o sea surface temperature variability to greenhouse warming. Nature Clim. Change, 4, 786–790. doi:  10.1038/NCLIMATE2326.CrossRefGoogle Scholar
  61. Kim, S.-W., K. Song, S.-Y. Kim, S.-W. Son, and C. Franzke, 2014d: Linear and nonlinear trends of extreme temperatures in Korea. Atmosphere, 24, 379–390. (In Korean with English abstract)CrossRefGoogle Scholar
  62. Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407.CrossRefGoogle Scholar
  63. Kug J.-S., and Y.-G. Ham 2011: Are there two types of La Niñañ. Geophy. Res. Lett., 38, L16704, doi:  10.1029/2011GL048237.CrossRefGoogle Scholar
  64. —, and M.-S. Ahn, 2013: Impact of urbanization on recent temperature and precipitation trends in the Korean peninsula. Asia-Pac. J. Atmos. Sci., 49, 151–159.CrossRefGoogle Scholar
  65. —, M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010: Statistical relationship between two types of El Ni?o events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467–474.CrossRefGoogle Scholar
  66. Kwon, T.-Y., S.-N. Oh, and S.-W. Park, 1998: Long-term variability and regional characteristics of summer rainfall in Korea. Asia-Pac. J. Atmos. Sci., 34, 20–30. (In Korean with English abstract)Google Scholar
  67. Lee, C. B., 1978: On the secular variation of air temperature in Seoul. Asia-Pac. J. Atmos. Sci., 14, 29–35. (In Korean with English abstract)Google Scholar
  68. Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Clim. Dynam., 40, 493–509.CrossRefGoogle Scholar
  69. —, —, Q. Ding, K.-J. Ha, J.-B. Ahn, A. Kumar, B. Stern, and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Clim. Dyn., 37, 1189–1203.CrossRefGoogle Scholar
  70. —, X. Fu, and B. Wang, 2015a: Predictability and prediction of the Madden-Julian Oscillation: A review on progress and current status. Submitted to the 3rd edition of the Global Monsoon System. C.-P. Chang et al. Eds., World Scientific.Google Scholar
  71. —, B. Wang, K.-H. Seo, J.-S. Kug, Y.-S. Choi, Y. Kosaka, and K.-J. Ha, 2014: Future change of Northern Hemisphere summer tropicalextratropical teleconnection in CMIP5 models. J. Climate, 27, 3643–3664.CrossRefGoogle Scholar
  72. Lee, M.-H., C.-H. Ho, J. Kim, and C.-K. Song, 2012b: Assessment of the changes in extreme vulnerability over East Asia due to global warming. Climatic Change, 113, 301–321.CrossRefGoogle Scholar
  73. Lee, K., H.-J. Baek, and C. Cho, 2013: Analysis of changes in extreme temperatures using quantile regression. Asia-Pac. J. Atmos. Sci., 49, 313–323.CrossRefGoogle Scholar
  74. —, —, S. Park, H.-S. Kang, and C.-H. Cho, 2012a: Future projection of changes in extreme temperatures using high resolution regional climate change scenario in the Republic of Korea. J. Korean Geogr. Soc., 47, 208–225Google Scholar
  75. Lee, S.-S., B. Wang, D. E. Waliser, J. M. Neena, and J.-Y. Lee, 2015b: Predictability and prediction skill of boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment. Clim. Dyn. in press. Doi: 10.1007/s00382-014-2461-5.Google Scholar
  76. Lei, Y., B. Hoskins, and J. Slingo, 2011: Exploring the interplay between natural decadal variability and anthropogenic climate change in summer rainfall over china. Part I: observational evidence. J. Climate, 24, 4584–4599.Google Scholar
  77. Lim, Y.-K., Y.-G. Ham, J.-H. Jeong, and J.-S. Kug, 2012: Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM. Environ. Res. Lett., 7, doi: 10.1088/1748-9326/7/4/044041.
  78. Liptak, J., and C. Strong, 2014: The winter atmospheric response to sea ice anomalies in the Barents Sea. J. Climate, 27, 914–924, doi: 10.1175/JCLI-D-13-00186.1.CrossRefGoogle Scholar
  79. Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci., 109, 4074–4079, doi: 10.1073/pnas.1114910109.CrossRefGoogle Scholar
  80. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci, 29, 1109–1123.CrossRefGoogle Scholar
  81. Mani, N. J., J.-Y. Lee, D. E. Waliser, B. Wang, and X. Jiang, 2014: Predictaility of the Madden-Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 4531–4543.CrossRefGoogle Scholar
  82. Mieruch, S., S. Noel, H. Bovensmann, J. P. Burrows, and J. A. Freund, 2010: Markov chain analysis of regional climates. Nonlinear Proc. Geophys., 17, 651–661.CrossRefGoogle Scholar
  83. Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more intense precipitation extremes. Nature, 470, 378–381.CrossRefGoogle Scholar
  84. —, Y.-H. Kim, M.-K. Kim, and C. Park, 2014: Assessing human contribution to the summer 2013 Korean heat wave [In “Explaining extreme events of 2013 from a climate perspective”]. Bull. Amer. Meteor. Soc., 95, S48–S51.Google Scholar
  85. —, X. Zhang, F. W. Zwiers, H. Shiogama, Y.-S. Tung, and M. Wehner, 2013: Multimodel detection and attribution of extreme temperature changes. J. Climate, 26, 7430–7451.CrossRefGoogle Scholar
  86. Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Clim. Dynam., 37, 1133–1149.CrossRefGoogle Scholar
  87. —, Y. Choi, and C. Park, 2013b: Analysis on the variability of Korean summer rainfall associated with the Tropical low-frequency oscillation. J. Korean Geogr. Soc., 48, 184–203.Google Scholar
  88. —, B. Wang, and K.-J. Ha, and J.-Y. Lee, 2013a: Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation. Clim. Dynam., 40, 2761–2774.CrossRefGoogle Scholar
  89. Morak, S., G. C. Hegerl, and N. Christidis, 2013: Detectable changes in the frequency of temperature extremes. J. Climate, 26, 1561–1574.CrossRefGoogle Scholar
  90. Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geosci., 7, 869–873CrossRefGoogle Scholar
  91. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390.Google Scholar
  92. O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. U.S.A., 106, 14773–14777.CrossRefGoogle Scholar
  93. Oh, H., and K.-J. Ha, 2014: Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon. Clim. Dynam., doi: 10.1007/s00382-014-2268-4.Google Scholar
  94. Oh, J.-H., T. Kim, M.-K. Kim, S.-H. Lee, S.-K. Min, and W.-T. Kwon, 2004: Regional climate simulation for Korea using dynamic downscaling and statistical adjustment. J. Meteor. Soc. Japan, 82, 1629–1643.CrossRefGoogle Scholar
  95. Oh, S.-K., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assesment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos., 119, 2913–2927.CrossRefGoogle Scholar
  96. Overland, J. E., and M. Y. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A., 62, 1–9, doi: 10.1111/j.1600-0870.2009.00421.x.CrossRefGoogle Scholar
  97. Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459–470.CrossRefGoogle Scholar
  98. Park, T.-W., C.-H. Ho, S. Yang, and J.-H. Jeong, 2010: Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea. J. Geophys. Res., 115, D23122.CrossRefGoogle Scholar
  99. —, —, S-J. Jeong, Y.-S. Choi, S. K. Park, and C.-K. Song, 2011: Different characteristics of cold day and cold surge frequency over East Asia in a global warming situation. J. Geophys. Res., 116, D12118.CrossRefGoogle Scholar
  100. Park, W.-S., and M.-S. Suh, 2011: Characteristics and trends of tropical night occurrence in South Korea for recent 50 years (1958–2007). Atmosphere, 21, 361–371. (In Korean with English abstract)Google Scholar
  101. Peterson, T. C., P. A. Stott, and S. Herring, 2012: Explaining extreme events of 2011 from a climate perspective. Bull. Amer. Meteor. Soc., 93, 1041–1067.CrossRefGoogle Scholar
  102. —, M. P. Hoerling, P. A. Stott, S. C. Herring, 2013: Explaining extreme events of 2012 from a climate perspective. Bull. Amer. Meteor. Soc., 94, S1–S74.CrossRefGoogle Scholar
  103. Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:  10.1029/2009jd013568.CrossRefGoogle Scholar
  104. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002jd002670.CrossRefGoogle Scholar
  105. Rho, C. S., 1973: On the rising trend of air temperature in Korea. Asia-Pac. J. Atmos. Sci., 9, 49–58. (In Korean with English abstract)Google Scholar
  106. Ryoo, S.-B., W.-T. Kwon, and J.-G. Jhun, 2004: Characteristics of wintertime daily and extreme minimum temperature over South Korea. Int. J. Climatol., 24, 145–160.CrossRefGoogle Scholar
  107. Santoso, A., and Coauthors, 2013: Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 504, 126–130.CrossRefGoogle Scholar
  108. Screen, J. A., and I. Simmonds, 2010a: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, doi: 10.1029/2010gl044136.CrossRefGoogle Scholar
  109. —, and —, 2010b: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337, doi: 10.1038/Nature09051.CrossRefGoogle Scholar
  110. —, and —, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959–964, doi: 10.1002/grl.50174.CrossRefGoogle Scholar
  111. Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to Tropical diabatic heating associated with the Madden-Julian Oscillation during Northern Winter. J. Atmos. Sci., 69, 79–96.CrossRefGoogle Scholar
  112. —, J.-K. E. Schemm, W. Wang, and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System (CFS): The effect of sea surface temperature. Mon. Wea. Rev, 135, 1807–1827.CrossRefGoogle Scholar
  113. Seo, Y.-W., H. Kim, K.-S. Yun, J.-Y. Lee, K.-J. Ha, and J.-Y. Moon, 2014: Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5. Asia-Pac. J. Atmos. Sci., 50, 57–72.CrossRefGoogle Scholar
  114. So, B.-J., H.-H. Kwon, and J. H. An, 2012: Trend analysis of extreme precipitation using quantile regression. J. Korea Water Resour. Assoc., 45, 815–826. (In Korean with English abstract)CrossRefGoogle Scholar
  115. Son, H.-Y., J.-Y. Park, J.-S. Kug, J. Yoo, and C.-H. Kim, 2014: Winter precipitation variability over Korean Peninsula associated with ENSO. Clim. Dynam., 41, 11–12. doi:10.1007/s00382-013-2008-1Google Scholar
  116. Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603, doi: 10.1002/2013GL058705.CrossRefGoogle Scholar
  117. Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 14036, doi: 10.1088/1748-9326/8/1/014036 CrossRefGoogle Scholar
  118. Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1217.CrossRefGoogle Scholar
  119. Vihma, T., 2014: Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Sur. Geophys., 35, 1175–1214.CrossRefGoogle Scholar
  120. Waliser, D. E., 2006: Predictability of tropical intraseasonal variability. Predictability of Weather and Climate. Chap. 11. T. N. Palmer and R. Hagedorn, Eds., Cambridge Univ. Press, 275–305.Google Scholar
  121. Wallace, J. M., I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. science, 343, 729–730.CrossRefGoogle Scholar
  122. Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asia teleconnection: How does ENSO affect East Asian climate?. J. Climate, 13, 1517–1536.CrossRefGoogle Scholar
  123. Wen, Q. H., X. Zhang, Y. Xu, and B. Wang, 2013: Detecting human influence on extreme temperatures in China. Geophys. Res. Lett., 40, 1171–1176.CrossRefGoogle Scholar
  124. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.CrossRefGoogle Scholar
  125. Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuation during the summer monsoon over India. J. Meteor. Soc. Japan., 58, 225–229.Google Scholar
  126. Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Ni?o: Observations, Dynamics, and Future changes. Asia-Pac. J. Atmos. Sci.. 50, 69–81.CrossRefGoogle Scholar
  127. Yu, K., Z. Lu, and J. Stander, 2003: Quantile regression: applications and current research areas. J. Roy. Stat. Soc., 52, 331–350.Google Scholar
  128. Yun, K.-S., K.-H. Seo, and K.-J. Ha, 2008: Relationship between ENSO and Northward Propagating ISO in the East Asian summer Monsoon System. J. Geophys. Res., 113, D14120, doi: 10.1029/2008JD009901.CrossRefGoogle Scholar
  129. —, —, and —, 2010: Interdecadal change in the relationship between ENSO and the intraseasonal oscillation in East Asia. J. Climate, 23, 3599–3612.CrossRefGoogle Scholar
  130. —, K.-J. Ha, B. Ren, J. C. L Chan, and J. G. Jhun, 2009: The 30–60 day oscillation in the East Asian sumer monsoon and its time-dependent association with the ENSO. Tellus A., 61A, 565–578.CrossRefGoogle Scholar
  131. Yoo, Y-E., S.-W. Son, H.-S. Kim, and J.-H. Jeong, 2015: Synoptic characteristics of cold days over South Korea and their relationship with large-scale climate variability, Atmosphere, submitted.Google Scholar
  132. Zhang, X., H. Wan, F. W. Zwiers, G. C. Hegerl, and S.-K. Min, 2013: Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett., 40, 5252–5257, doi: 10.1002/grl.51010.CrossRefGoogle Scholar
  133. Zhang, C., 2013: Madden-Julian Oscillation: bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849–1870.CrossRefGoogle Scholar
  134. Zhou, T., B. Wu, and L. Dong 2014: Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate. Asia-Pac. J. Atmos. Sci., 50, 405–422.CrossRefGoogle Scholar
  135. —, D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon- Recent progress and state of affairs. Meteorol. Z., 18, 455–467.CrossRefGoogle Scholar
  136. Zwiers, F. W., X. Zhang, and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 881–892.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Seung-Ki Min
    • 1
  • Seok-Woo Son
    • 2
  • Kyong-Hwan Seo
    • 3
  • Jong-Seong Kug
    • 1
  • Soon-Il An
    • 4
  • Yong-Sang Choi
    • 5
  • Jee-Hoon Jeong
    • 6
  • Baek-Min Kim
    • 7
  • Ji-Won Kim
    • 4
  • Yeon-Hee Kim
    • 1
  • June-Yi Lee
    • 8
  • Myong-In Lee
    • 9
  1. 1.School of Environmental Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
  3. 3.Department of Atmospheric SciencesPusan National UniversityBusanKorea
  4. 4.Department of Atmospheric SciencesYonsei UniversitySeoulKorea
  5. 5.Department of Environmental Science and EngineeringEwha Womans UniversitySeoulKorea
  6. 6.Department of OceanographyChonnam National UniversityKwangjuKorea
  7. 7.Korea Polar Research InstituteIncheonKorea
  8. 8.Research Center for Climate SciencesPusan National UniversityBusanKorea
  9. 9.School of Urban and Environmental EngineeringUNISTUlsanKorea

Personalised recommendations