Asia-Pacific Journal of Atmospheric Sciences

, Volume 51, Issue 1, pp 49–60 | Cite as

Intra-winter atmospheric circulation changes over East Asia and North Pacific associated with ENSO in a seasonal prediction model

  • Sunyong Kim
  • Hyeong-Seog Kim
  • Seung-Ki Min
  • Hye-Young Son
  • Duk-Jin Won
  • Hyun-Sook Jung
  • Jong-Seong Kug


Though tropical SST anomalies associated with El Niño change slowly during the mature phase of El Niño, the resultant extratropical teleconnection patterns are quite different with time. In this study, the intra-winter changes in the teleconnection pattern associated with El Niño are investigated using the NCEP reanalysis and observational data and the high-resolution seasonal prediction data. The observational analyses show that there are distinctively changes in the teleconnection pattern over the North Pacific within the winter. In the early winter (November-December) of El Niño years, there is a distinctive anomalous Kuroshio anticyclone, which is closely related to the East Asian climate. In January, in contrast, the Kuroshio anticyclone suddenly disappears and a strong cyclonic flow, which is part of the Pacific-North American (PNA) teleconnection pattern, develops. It is suggested that the intra-winter changes are controlled by the relative roles of the equatorial central Pacific (CP) and western north Pacific (WNP) precipitation anomalies on the extratropical teleconnection over the North Pacific. On the other hand, the prediction data failed to capture the observed intra-winter changes in the teleconnection pattern, though the predictive skills for tropical SST and precipitation are high. It is revealed that this model’s discrepancy in the extratropical teleconnection is partly originated from the failure in predicting the relative magnitude of CP and WNP precipitation anomalies. Further analyses on the ensemble spread of the prediction data support the relative roles of CP and WNP precipitation anomalies in affecting the extratropical circulation over the North Pacific.


ENSO East Asian climate CP and WNP precipitation teleconnection GloSea5 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, J.-B., J.-H. Ryu, E.-H. Cho, J.-Y. Park, and S.-B. Ryoo, 1997: A Study on correlations between air-temperature and precipitation in Korea and SST over the Tropical Pacific. J. Korean Meteor. Soc., 33, 7–48495. (in Korean with English abstract)Google Scholar
  2. Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean Dipole on the Relationship between the Indian Monsoon Rainfall and ENSO. Geophys. Res. Lett., 28, 4499–4502.CrossRefGoogle Scholar
  3. Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007.CrossRefGoogle Scholar
  4. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description — Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677–699.CrossRefGoogle Scholar
  5. Blade, I., M. Newman, M. A. Alexander, and J. D. Scott, 2008: The late fall extratropical response to ENSO: sensitivity to coupling and convection in the tropical West Pacific. J. Climate, 21, 6101–6118.CrossRefGoogle Scholar
  6. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.CrossRefGoogle Scholar
  7. Cha, E.-J., J.-G. Jhun, and H.-S. Chung, 1999: A study of characteristics of climate in South Korea for El Niño/La Niña years. J. Korean Meteor. Soc., 35, 98–117. (in Korean with English abstract)Google Scholar
  8. Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 1699–1702.CrossRefGoogle Scholar
  9. Chen, D., M. A. Cane, A. Kaplan, S. E. Zeblak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736.CrossRefGoogle Scholar
  10. Diaz H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 1845–1862.CrossRefGoogle Scholar
  11. Duan, W., and C. Wei, 2013: The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: results from a fully coupled model. Int. J. Climatol., 33, 1280–1291.CrossRefGoogle Scholar
  12. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106, 447–462.CrossRefGoogle Scholar
  13. Ha, K.-J., 1995: Interannual variabilities of wintertime Seoul temperature and the correlation with Pacific Sea surface temperature. J. Korean Meteor. Soc., 35, 98–117. (in Korean with English abstract)Google Scholar
  14. Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10(12), 3131–3156.CrossRefGoogle Scholar
  15. Horel, J. D., and J. M. Wallace, 1981: Planetary scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 125, 773–788.Google Scholar
  16. Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196.CrossRefGoogle Scholar
  17. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: the Los Alamos Sea Ice Model Documentation and 15 Software User’s Manual Version 4.1 LACC-06-012, T-3 Fluid Dynamics Group, Los Alamos National Laboratory, 2163.Google Scholar
  18. Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dynam., 31, 647–664.CrossRefGoogle Scholar
  19. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  20. Kang, I.-S., 1998: Relationship between El Niño and climate variation over Korea peninsula. J. Korean Meteor. Soc., 34, 390–396. (in Korean with English abstract)Google Scholar
  21. Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.CrossRefGoogle Scholar
  22. Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between the Indian Ocean and ENSO. J. Climate, 19, 1784–1801.CrossRefGoogle Scholar
  23. Kug, J.-S., Ben P. Kirtman, and I.-S. Kang, 2006b: Interactive feedback between ENSO and the Indian Ocean in an interactive coupled model. J. Climate, 19, 6371–6381.CrossRefGoogle Scholar
  24. Kug, J.-S., I.-S. Kang, and D.-H. Choi, 2008a; Seasonal climate predictability with Tier-one and Tier-two prediction systems. Clim. Dynam., 31, 403–416.CrossRefGoogle Scholar
  25. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two-types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515.CrossRefGoogle Scholar
  26. Kug, J.-S., I.-S. Kang, J.-Y. Lee, and J.-G. Jhun, 2004: A statistical approach to Indian Ocean sea surface temperature prediction using a dynamical ENSO prediction. Geophys. Res. Lett., 31, L09212.CrossRefGoogle Scholar
  27. Kug, J.-S., S.-I. An, F.-F. Jin, and I.-S. Kang, 2005: Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys. Res. Lett., 32, L05706.CrossRefGoogle Scholar
  28. Kug, J.-S., J.-Y. Lee, I.-S. Kang, B. Wang, and C. K. Park, 2008b: Optimal multi-model ensemble method in seasonal climate prediction. Asia-Pac. J. Atmos. Sci., 44, 233–247.Google Scholar
  29. Kug, J.-S., M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010: Statistical relationship between two types of El Niño events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467–474.CrossRefGoogle Scholar
  30. Kug, J.-S., T. Li, S.-I. An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006a: Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, L09710.CrossRefGoogle Scholar
  31. Lau, N.-C., and M. J. Nath, 2003: Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20.CrossRefGoogle Scholar
  32. Lim Y.-K., and H.-D. Kim, 2013: Impact of the dominant large-scale teleconnections on winter temperature variability over East Asia. J. Geophys. Res., 118(14), 7835–7848.Google Scholar
  33. Livezey, R. E., and K. C. Mo, 1987: Tropical-extratropical teleconnections during the northern hemisphere winter. Part II: relationships between monthly mean northern hemisphere circulation patterns and proxies for tropical convection. Mon. Weather Rev., 115, 3115–3132.CrossRefGoogle Scholar
  34. Livezey, R. E., M. Masutani, A. Leetmaa, H. Rui, M. Ji, and A. Kumar, 1997: Teleconnective response of the Pacific-North American region atmosphere to large central Equatorial Pacific SST anomalies. J. Climate, 10, 1787–1820.CrossRefGoogle Scholar
  35. MacLachlan, C., and Coauthors, 2014: Global Seasonal forecast system version5 (GloSea5): a high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., doi: 10.1002/qj.2396.Google Scholar
  36. Madec G., 2008: NEMO ocean engine, note du pole de modelisation. Institut Pierre-Simon Laplace (IPSL): Paris.Google Scholar
  37. Mogensen, K., M. A. Balmaseda, and A. T. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4, Technical Report TR-CMGC-12-30. CERFACS: Toulouse, France.Google Scholar
  38. Nitta T., 1987: Convective activities in the Tropical Western Pacific and their impact on the Norther Hemisphere summer circulation. J. Meteor. Soc. Japan, 64, 373–390.Google Scholar
  39. Ratnam, J. V., S. K. Behera, Y. Masumoto, K. Takahashi, and T. Yamagata, 2010: Pacific Ocean origin for the 2009 Indian summer monsoon failure. Geophys. Res. Lett., 37, L07807.CrossRefGoogle Scholar
  40. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements NOAAs historical merged land-ocean temp analysis (1880–2006). J. Climate, 21, 2283–2296.CrossRefGoogle Scholar
  41. Son, H.-Y., J.-Y. Park, J.-S. Kug, J. Yoo, and C.-H. Kim, 2014: Winter precipitation variability over Korean Peninsula associated with ENSO. Clim. Dynam. 42, 3171–3186.CrossRefGoogle Scholar
  42. Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geosci., 6, 540–544.CrossRefGoogle Scholar
  43. Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures, J. Geophys. Res., 103(C7), 14291–14324.CrossRefGoogle Scholar
  44. Walters, D. N., and Coauthors, 2011: The met office unified model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919–941.CrossRefGoogle Scholar
  45. Wang, B., and X. Xie, 1996: Low-Frequency equatorial waves in vertically shear flow. Part I: Stable waves. J. Atmos. Sci., 53, 449–467.CrossRefGoogle Scholar
  46. Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?. J. Climate, 13, 1517–1536.CrossRefGoogle Scholar
  47. Wang, H., and R. Fu, 2000: Winter monthly mean atmospheric anomalies over the North Pacific and North America associated with El Niño SSTs. Amer. Meteor., Soc., 13, 3435–3447.Google Scholar
  48. Watanabe, M., and F.-F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29(10), 1478.CrossRefGoogle Scholar
  49. Watanabe, M., and F.-F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical-convective response to El Niño. J. Climate, 16, 1121–1139.CrossRefGoogle Scholar
  50. Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteor. Atmos. Phys., 56, 33–55.CrossRefGoogle Scholar
  51. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.CrossRefGoogle Scholar
  52. Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360.CrossRefGoogle Scholar
  53. Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-Related rainfall anomalies in East Asia. J. Climate, 16, 3742–3758.CrossRefGoogle Scholar
  54. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.CrossRefGoogle Scholar
  55. Xie, S. P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864–878.CrossRefGoogle Scholar
  56. Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett, 34, L02708.CrossRefGoogle Scholar
  57. Yang, S., and K.-M. Lau, 1998: Influences of sea surface temperature and ground wetness on Asian summer monsoon. J. Climate, 11, 3230–3246.CrossRefGoogle Scholar
  58. Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 69–81.CrossRefGoogle Scholar
  59. Yuan, Y., S. Yang, and Z. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between the Eastern and Central Pacific El Niño: Possible effects of Indian Ocean SST. J. Climate, 25, 7867–7883.CrossRefGoogle Scholar
  60. Zhou, T., B. Wu, and L. Dong, 2014: Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate. Asia-Pac. J. Atmos. Sci., 50, 405–422.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sunyong Kim
    • 1
  • Hyeong-Seog Kim
    • 1
  • Seung-Ki Min
    • 2
  • Hye-Young Son
    • 2
  • Duk-Jin Won
    • 3
  • Hyun-Sook Jung
    • 3
  • Jong-Seong Kug
    • 2
  1. 1.Department of Convergence Study on the Ocean Science and TechnologyOcean Science and Technology SchoolBusanKorea
  2. 2.School of Environmental Science and EngineeringPohang University of Science and TechnologyPohang, GyeongbukKorea
  3. 3.Korea Meteorological AdministrationSeoulKorea

Personalised recommendations