Asia-Pacific Journal of Atmospheric Sciences

, Volume 50, Issue 1, pp 31–43 | Cite as

A theory for polar amplification from a general circulation perspective

Review

Abstract

Records of the past climates show a wide range of values of the equator-to-pole temperature gradient, with an apparent universal relationship between the temperature gradient and the globalmean temperature: relative to a reference climate, if the global-mean temperature is higher (lower), the greatest warming (cooling) occurs at the polar regions. This phenomenon is known as polar amplification. Understanding this equator-to-pole temperature gradient is fundamental to climate and general circulation, yet there is no established theory from a perspective of the general circulation. Here, a general circulation-based theory for polar amplification is presented. Recognizing the fact that most of the available potential energy (APE) in the atmosphere is untapped, this theory invokes that La-Niña-like tropical heating can help tap APE and warm the Arctic by exciting poleward and upward propagating Rossby waves.

Keywords

Polar amplification general circulation equable climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot, D. S., and E. Tziperman, 2008a: A high-latitude convective cloud feedback and equable climates. Quart. J. Roy. Meteor. Soc., 134, 165–185.CrossRefGoogle Scholar
  2. —, and —, 2008b: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, doi:10.1029/2007 GL032286.CrossRefGoogle Scholar
  3. —, C.C. Walker, and E. Tziperman, 2009: Can a convective cloud feedback help to eliminate winter and spring sea ice at high CO2 concentrations? J. Climate, 22, 5719–5731.Google Scholar
  4. Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim. Dynam., 24, 655–666.CrossRefGoogle Scholar
  5. Bannon, P. R., 2012: Atmospheric available energy. J. Atmos. Sci., 69, 3745–3762.CrossRefGoogle Scholar
  6. Barron, E. J., W. H. Peterson, D. Pollard, and S. L. Thompson, 1993: Past climate and the role of ocean heat transport: model simulations for the Cretaceous. Paleoceanography, 8, 785–798.CrossRefGoogle Scholar
  7. Bekryaev, Roman V., Igor V. Polyakov, and Vladimir A. Alexeev, 2010: Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming. J. Climate, 23, 3888–3906.CrossRefGoogle Scholar
  8. Bralower, T. J., D. J. Thomas, J. C. Zachos, M. M. Hirschmann, U. Rohl, H. Sigudsson, H. E. Thomas, and D. L. Whitney, 1997: High-resolution records of late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link? Geology, 25, 963–966.CrossRefGoogle Scholar
  9. Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611–619.CrossRefGoogle Scholar
  10. —, and Y. A. Izrael, 1991: In Anthropogenic Climate Change, ed. M. I. Budyko, Y. A. Izrael, pp. 277–318. Tucson: Uni. Ariz. Press.Google Scholar
  11. Caballero, R., and M. Huber, 2010: spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, doi:10.1029/2010GL043468.Google Scholar
  12. Charney, J. G., and P. G. Drazin, 1961: propgation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109.CrossRefGoogle Scholar
  13. —, and M. E. Stern, 1962: On the instability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19, 159–172.CrossRefGoogle Scholar
  14. Chiang, John C. H., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography, 18(4), doi:10.1029/2003PA 000916.Google Scholar
  15. Cehelsky, P., and K. K. Tung, 1987: Theories of multiple equilibria and weather regimes-A critical reexamination. Part II: Baroclinic two-layer models. J. Atmos. Sci., 44, 3282–3303.Google Scholar
  16. Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–2196.CrossRefGoogle Scholar
  17. DeConto, R. M., E. C. Brady, J. C. Bergengren, and W. W. Hay, 2000: Late Cretaceous climate, vegetation and ocean interactions in Warm Climates in Earth History, B. R. Huber, K. G. MacLeod, S. L. Wing, Eds., Cambrige Univ. Press, pp. 275–296.Google Scholar
  18. Douglas, R. G., and S. M. Savin, 1978: Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera. Mar. Micropaleontol., 3, 175–196.CrossRefGoogle Scholar
  19. Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 4342–4362.CrossRefGoogle Scholar
  20. Farrell, B. F., 1990: Equable climate dynamics. J. Atmos. Sci., 47, 2986–2995.CrossRefGoogle Scholar
  21. Flourney, M., S. B. Feldstein, S. Lee, and E. Clothiaux 2014: On the linkage between station downward infrared radiation data, teleconnections, and tropical convection. In preparation.Google Scholar
  22. Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropical precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 3282–3299.CrossRefGoogle Scholar
  23. —, S. B. Feldstein, D. W. Waugh, C. Yoo, and S. Lee, 2012: Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation. Geophys. Res. Lett., 39, http://dx.doi.org/10.1029/2012GL053144.
  24. Graversen, R. G., 2006: Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend? J. Climate, 19, 5422–5438.CrossRefGoogle Scholar
  25. —, and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Clim. Dynam., 33, 629–643, doi:10.1007/s00382-009-0535-6.CrossRefGoogle Scholar
  26. Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity. Geoph. Monog. series, 29, Amer. Geophys. Union, 130–163 pp.CrossRefGoogle Scholar
  27. Held, I. M., and V. D. Larichev, 1996: Scaling theory for horizontally homogeneous, baro- clinically unstable flow on a beta-plane. J. Atmos. Sci., 53, 945–952.CrossRefGoogle Scholar
  28. —, and B. J. Soden, 2006: Robust response of the hydrological cycle to global warming. J. Climate, 5686–5699.Google Scholar
  29. Hoffert, M. I., and C. Covey, 1992: Deriving global climate sensitivity from palaeoclimate reconstructions. Nature, 360, 573–576.CrossRefGoogle Scholar
  30. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.CrossRefGoogle Scholar
  31. Hoskins, B. J., and D. Karoly, 1981: the steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 179–1196.Google Scholar
  32. Huber, B., K. G. MacLeod, and S. L. Wing, 2000: Warm Climates in Earth History. Cambridge Press, 462 pp.Google Scholar
  33. Huber, M. 2008: A hotter greenhouse? Science, 321, 353–354.CrossRefGoogle Scholar
  34. Huang, H.-P., K. M. Weickmann, and C. J. Hsu, 2001: Trend in atmospheric angular momentum in a transient climate change simulation with greenhouse gas and aerosol forcing. J. Climate, 14, 1525–1534.CrossRefGoogle Scholar
  35. Hwang, Y.-T., and D. M. W. Frierson, 2010: Increasing atmo- spheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, doi:10.1029/2010GL045440.Google Scholar
  36. Johanneseen, O. M., and Coauthors, 2004: Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus, 56A, 328–341.CrossRefGoogle Scholar
  37. Kim, H. K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 2859–2871.CrossRefGoogle Scholar
  38. Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cycloneinduced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638–654.CrossRefGoogle Scholar
  39. Koutavas, A., J. Lynch-Stieglitz, T. M. Marchitto Jr., and J. P. Sachs, 2002: El Niño-Like Pattern in Ice Age Tropical Pacific Sea Surface Temperature. Science, 297, 226–230, doi: 10.1126/science.1072376.CrossRefGoogle Scholar
  40. Kump, L. R., and D. Pollard, 2008: Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 320, 195.CrossRefGoogle Scholar
  41. L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nature Climate Change, 3, 571–576, doi:10.1038/NCLIMATE1840.Google Scholar
  42. Lea, D. W., D. K. Pak, and H. J. Spero, 2000: Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science, 289, 1719. doi: 10.1126/science.289.5485.1719CrossRefGoogle Scholar
  43. Lee, S., 1999: Why are the climatological zonal mean winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 1353–1363.CrossRefGoogle Scholar
  44. —, S. Feldstein, D. Pollard, and T. White, 2011a: Can planetary wave dynamics explain equable climates? J. Climate, 24, 2391–2404.CrossRefGoogle Scholar
  45. —, T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011b: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 4350–4367.Google Scholar
  46. —, 2012: Testing of the Tropically Excited Arctic Warming Mechanism (TEAM) with traditional El Niño and La Niña. J. Climate, 25, 4015–4022, doi: 10.1175/jcli-d-12-00055.1.Google Scholar
  47. Li, L., A. P. Ingersoll, X. Jiang, D. Feldman, and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813.Google Scholar
  48. Lindzen, R. S., and B. Farrell, 1980: The role of polar regions in global climate, and the parameterization of global heat transport. Mon. Weather Rev., 108, 2064–79.CrossRefGoogle Scholar
  49. Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. PNAS, 109, 4074–4079, doi: 10.1073/pnas.1114910109.CrossRefGoogle Scholar
  50. Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167.CrossRefGoogle Scholar
  51. Lu, J., and M. Cai, 2010: Quantifying contributions to polar warming amplification in an idealized coupled general circu- lation model. Clim. Dynam., 34, 669–687.CrossRefGoogle Scholar
  52. Madden R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.CrossRefGoogle Scholar
  53. —, and —, 1972: Description of global scale circulation cells in the Tropics with 40-50 day period. J. Atmos. Sci., 29, 1109–1123.CrossRefGoogle Scholar
  54. Manabe, S., and R. T. Wetherald, 1975: The effect of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 3–15.CrossRefGoogle Scholar
  55. —, and R. J. Stouffer, 1980: Sensitivity of global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 5529–5554.CrossRefGoogle Scholar
  56. Masson-Delmotte, and Coauthors, 2006: Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dynam., 26, 513–529.CrossRefGoogle Scholar
  57. Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian Oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 1991–2011, doi: 10.1256/qj.02.123.CrossRefGoogle Scholar
  58. McKenna, M., 1980: Eocene paleolatitude, climate, and mammals of Ellesmere Island. Palaeogeogr. Palaeocl., 30, 349–362.CrossRefGoogle Scholar
  59. Meehl, G. A., and Coauthors, 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  60. Miller, G. H., R. B. Alley, J. Brigham-Grette, J. J. Fitzpatrick, L. Polyak, M. C. Serreze, and J. W. C. White, 2010: Arctic amplication: can the past constrain the future? Quat. Sci. Rev., 29, 1779–1790, doi:10.1016/ j.quascirev.2010.02.008CrossRefGoogle Scholar
  61. Otto-Bliesner, B. L., and G. R. Upchurch, 1997: Vegetation-induced warming of high-latitude regions during the late Cretaceous period. Nature, 385, 804–807.CrossRefGoogle Scholar
  62. Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes associated with the recent loss of Arctic sea ice. Tellus, 62A, 1–9.CrossRefGoogle Scholar
  63. Park, H.-S., S. Lee, S.-W. Son, Y. Kosaka, and S. B. Feldstein 2014: Rapid increase in Arctic winter downward longwave radiation and sea ice melting. In preparation.Google Scholar
  64. Pearson, P. N., P. W. Ditchfield, J. Singano, K. G. Harcourt-Brown, C. J. Nicholas, R. K. Olsson, N. J. Shackleton, and M. A. Hall, 2001: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413, 481–487.CrossRefGoogle Scholar
  65. Pedlosky, J., 1964: The stability of currents in the atmosphere and ocean. Part I. J. Atmos. Sci., 21, 201–219.CrossRefGoogle Scholar
  66. Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.Google Scholar
  67. Persson, P. O., 2012: Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA. Clim. Dynam., 39, 1349–1371. doi:10.1007/s00382-011-1196-9CrossRefGoogle Scholar
  68. Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.CrossRefGoogle Scholar
  69. Pfeffer, R. L., 1981: Wave-mean flow interactions in the atmosphere. J. Atmos. Sci., 38, 1340–1359.CrossRefGoogle Scholar
  70. Rickaby, R. E. M., and P. Halloran, 2005: Cool La Niña during the warmth of the Pliocene? Science, 307(5717), 1948–1952. doi: 10.1126/science.1104666.CrossRefGoogle Scholar
  71. Rigor, I. G., R. L. Colony, and S. Martin, 2000: Variations in surface air temperature observations in the Arctic, 1979-97. J. Climate, 13, 896–914.CrossRefGoogle Scholar
  72. Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astro. Fluid, 15, 167–211.CrossRefGoogle Scholar
  73. Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50, 1211–1227.CrossRefGoogle Scholar
  74. Sardeshmukh, P. D., and B. J. Hoskins, 1988: The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence. J. Atmos. Sci., 45, 1228–1251.CrossRefGoogle Scholar
  75. Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Quat. Sci. Rev., 77, 85–96, doi: 10.1016/j.gloplacha.2011.03.004Google Scholar
  76. Sewall, J. O., and L. C. Sloan, 2004: Arctic Ocean and reduced obliquity on early Paleogene climate. Geology, 32, 477–480.CrossRefGoogle Scholar
  77. Singarayer, J. S., J. L. Bamber, and P. J. Valdes, 2006: Twenty-first-century climate impacts from a declining Arctic sea ice cover. J. Climate, 19, 11091125.CrossRefGoogle Scholar
  78. Sloan, L. C., J. C. G. Walker, and T. C. Moore, 1995: The role of oceanic heat transport in early Eocene climate. Paleoceanography, 10, 347–356.CrossRefGoogle Scholar
  79. Sohn, B. J., and S.-C. Park, 2010: Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res., 115, D15112.CrossRefGoogle Scholar
  80. Spicer, R. A., A. Ahlberg, A. B. Herman, C.-C. Hofmann, M. Raikevich, P. J. Valdes, and P. J. Markwick, 2008: The Late Cretaceous continental interior of Siberia: A challenge for climate models. Earth Plan. Sci. Lett., 267, 228–235.CrossRefGoogle Scholar
  81. Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577–580.CrossRefGoogle Scholar
  82. Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 1053; doi: 10.1126/science.1237554.CrossRefGoogle Scholar
  83. Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci. 35, 561–71.CrossRefGoogle Scholar
  84. Stott, L., C. Poulsen, S. Lund, and R. Thunell, 2002: Super ENSO and global climate oscillations at millennial time scales. Science, 297, 222, doi: 10.1126/science.1071627.CrossRefGoogle Scholar
  85. Stroeve, J., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110, 1005–1027, doi:10.1007/s10584-011-0101-1CrossRefGoogle Scholar
  86. Tarduno, J. A., D. B. Brinkman, P. R. Renne, R. D. Cottrell, H. Scher, and P. Castillo, 1998: Evidence for extreme climatic warmth from late Cretaceous Arctic vertebrates. Science, 282, 2241–2244.CrossRefGoogle Scholar
  87. Vallis, G. K., 1988: Numerical studies of eddy transport properties in eddyresolving and parameterized models. Quart. J. Roy. Meteor. Soc., 114, 183–204.CrossRefGoogle Scholar
  88. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340.CrossRefGoogle Scholar
  89. Visser, K., R. Thunell, and L. Stott, 2003: Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature, 421, 152–155.CrossRefGoogle Scholar
  90. Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333–3350.CrossRefGoogle Scholar
  91. Walsh, J. E., W. L. Chapman, V. E. Romanovsky, J. H. Christensen, and M. Stendel, 2008: Global climate model performance over Alaska and Greenland. J. Climate, 21, 6156–6174.CrossRefGoogle Scholar
  92. Wang, X., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder dataset. Part II: recent trends. J. Climate, 18, 2575–2593.Google Scholar
  93. Winton, M., 2006: Amplified Arctic climate change: what does surface albedo feedback have to do with it. Geophys. Res. Lett., 33, doi: 10.1029/2005GL025244.Google Scholar
  94. Wu, Y., M. Ting, R. Seager, H.-P. Huang, and M. Cane, 2010: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Clim. Dynam., 37, 53–72, doi:10.1007/s00382-010-0776-4.Google Scholar
  95. Yoo, C., S. Feldstein, and S. Lee, 2011: The impact of the Madden-Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979-2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.CrossRefGoogle Scholar
  96. —, S. Lee, and S. B. Feldstein, 2012a: Mechanisms of extratropical surface air temperature change in response to the Madden-Julian oscillation. J. Climate, 25, 5777–5790, doi: 10.1175/jcli- d-11-00566.1.CrossRefGoogle Scholar
  97. —, —, and —, 2012b: Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmos. Sci., 69, 2379–2393, DOI: 10.1175/JAS-D-11-0261.1.Google Scholar
  98. Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608–624.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.The Pennsylvania State UniversityUniversity ParkUSA
  2. 2.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
  3. 3.Department of MeteorologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations