Advertisement

Asia-Pacific Journal of Atmospheric Sciences

, Volume 50, Issue 1, pp 17–30 | Cite as

Urban impacts on precipitation

  • Ji-Young Han
  • Jong-Jin BaikEmail author
  • Hyunho Lee
Review

Abstract

Weather and climate changes caused by human activities (e.g., greenhouse gas emissions, deforestation, and urbanization) have received much attention because of their impacts on human lives as well as scientific interests. The detection, understanding, and future projection of weather and climate changes due to urbanization are important subjects in the discipline of urban meteorology and climatology. This article reviews urban impacts on precipitation. Observational studies of changes in convective phenomena over and around cities are reviewed, with focus on precipitation enhancement downwind of cities. The proposed causative factors (urban heat island, large surface roughness, and higher aerosol concentration) and mechanisms of urban-induced and/or urban-modified precipitation are then reviewed and discussed, with focus on downwind precipitation enhancement. A universal mechanism of urban-induced precipitation is made through a thorough literature review and is as follows. The urban heat island produces updrafts on the leeward or downwind side of cities, and the urban heat island-induced updrafts initiate moist convection under favorable thermodynamic conditions, thus leading to surface precipitation. Surface precipitation is likely to further increase under higher aerosol concentrations if the air humidity is high and deep and strong convection occurs. It is not likely that larger urban surface roughness plays a major role in urbaninduced precipitation. Larger urban surface roughness can, however, disrupt or bifurcate precipitating convective systems formed outside cities while passing over the cities. Such urban-modified precipitating systems can either increase or decrease precipitation over and/or downwind of cities. Much effort is needed for in-depth or new understanding of urban precipitation anomalies, which includes local and regional modeling studies using advanced numerical models and analysis studies of long-term radar data.

Keywords

Urban impacts precipitation urban heat island surface roughness aerosols urbanization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, B., and Coauthors, 1978: Summary of METROMEX, Volume 2: Causes of Precipitation Anomalies, Bull. 63, Illinois State Water Survey, 395 pp.Google Scholar
  2. Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342.Google Scholar
  3. Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 1–26.Google Scholar
  4. Atkinson, B. W., 1968: A preliminary examination of the possible effect of London’s urban area on the distribution of thunder rainfall 1951-60. T. I. Brit. Geogr., 44, 97–118.Google Scholar
  5. —, 1969: A further examination of the urban maximum of thunder rainfall in London, 1951-60. T. I. Brit. Geogr., 48, 97–119.Google Scholar
  6. —, 1971: The effect of an urban area on the precipitation from a moving thunderstorm. J. Appl. Meteorol., 10, 47–55.Google Scholar
  7. Baik, J.-J., 1992: Response of a stably stratified atmosphere to low-level heating-An application to the heat island problem. J. Appl. Meteorol., 31, 291–303.Google Scholar
  8. —, and H.-Y. Chun, 1997: A dynamical model for urban heat islands. Bound.-Layer Meteor., 83, 463–477.Google Scholar
  9. —, Y.-H. Kim, and H.-Y. Chun, 2001: Dry and moist convection forced by an urban heat island. J. Appl. Meteorol., 40, 1462–1475.Google Scholar
  10. —, —, J.-J. Kim, and J.-Y. Han, 2007: Effects of boundary-layer stability on urban heat island-induced circulation. Theor. Appl. Climatol., 89, 73–81.Google Scholar
  11. Bell, T. L., D. Rosenfeld, K.-M. Kim, J.-M. Yoo, M.-I. Lee, and M. Hahneberger, 2008: Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res., 113, D02209, doi:10.1029/2007JD008623.Google Scholar
  12. Bornstein, R., and M. LeRoy, 1990: Urban barrier effects on convective and frontal thunderstorms. Extended Abstracts, Fourth Conf. Mesoscale Processes, Boulder, CO, Amer. Meteor. Soc., 120–121.Google Scholar
  13. —, and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos. Environ., 34, 507–516.Google Scholar
  14. Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.Google Scholar
  15. Burian, S. J., and J. M. Shepherd, 2005: Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrol. Process., 19, 1089–1103.Google Scholar
  16. Carrió, G. G., and W. R. Cotton, 2011: Urban growth and aerosol effects on convection over Houston. Part II: Dependence of aerosol effects on instability. Atmos. Res., 102, 167–174.Google Scholar
  17. —, —, and W. Y. Y. Cheng, 2010: Urban growth and aerosol effects on convection over Houston. Part I: The August 2000 case. Atmos. Res., 96, 560–574.Google Scholar
  18. Changnon, S. A., Jr., 1968: The La Porte weather anomaly-Fact or fiction? Bull. Amer. Meteor. Soc., 49, 4–11.Google Scholar
  19. —, 1980a: More on the La Porte anomaly: A review. Bull. Amer. Meteor. Soc., 61, 702–717.Google Scholar
  20. —, 1980b: Evidence of urban and lake influences on precipitation in the Chicago area. J. Appl. Meteorol., 19, 1137–1159.Google Scholar
  21. —, 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.Google Scholar
  22. —, 2001: Assessment of historical thunderstorm data for urban effects: The Chicago case. Climatic Change, 49, 161–169.Google Scholar
  23. —, and N. E. Westcott, 2002: Heavy rainstorms in Chicago: Increasing frequency, altered impacts, and future implications. J. Amer. Water Resour. Assoc., 38, 1467–1475.Google Scholar
  24. —, F. A. Huff, P. T. Schickerdanz, and J. L. Vogel, 1977: Summary of METROMEX, Volume 1: Weather Anomalies and Impacts. Bull. 62, Illinois State Water Survey, 260 pp.Google Scholar
  25. —, R. T. Shealy, and R. W. Scott, 1991: Precipitation changes in fall, winter, and spring caused by St. Louis. J. Appl. Meteorol., 30, 126–134.Google Scholar
  26. Chen, T.-C., S.-Y. Wang, and M.-C. Yen, 2007: Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. J. Appl. Meteor. Climatol., 46, 1324–1340.Google Scholar
  27. Choi, Y.-S., C.-H. Ho, J. Kim, D.-Y. Gong, and R. J. Park, 2008: The impacts of aerosols on the summer rainfall frequency in China. J. Appl. Meteor. Climatol., 47, 1802–1813.Google Scholar
  28. Chow, S. D., and C. Chang, 1984: Shanghai urban influences on humidity and precipitation distribution. GeoJournal, 8, 201–204.Google Scholar
  29. Chun, H.-Y., 1991: Role of a critical level in a shear flow with diabatic forcing. Ph. D. dissertation, North Carolina State University, 159 pp.Google Scholar
  30. Comarazamy, D. E., J. E. González, J. Luvall, D. Rickman, and A. Picón, 2006: A validation study of the urban heat island in the tropical coastal city of San Juan, Puerto Rico. Extended Abstracts, Sixth Symp. on the Urban Environment, Atlanta, GA, Amer. Meteor. Soc., 7 pp.Google Scholar
  31. Cotton, W. R., and R. A. Pielke, 1995: Human Impacts on Weather and Climate. Cambridge University Press, 288 pp.Google Scholar
  32. Craig, K. J., and R. D. Bornstein, 2002: MM5 simulations of urban induced convective precipitation over Atlanta. Preprints. Fourth Symp. on the Urban Environment, Norfolk, VA, Amer. Meteor. Soc., 5–6.Google Scholar
  33. De, U. S., and G. S. P. Rao, 2004: Urban climate trends - The Indian scenario. J. Ind. Geophys. Union, 8, 199–203.Google Scholar
  34. Diem, J. E., and T. L. Mote, 2005: Interepochal changes in summer precipitation in the southeastern United States: Evidence of possible urban effects near Atlanta, Georgia. J. Appl. Meteorol., 44, 717–730.Google Scholar
  35. Dixon, P. G., and T. L. Mote, 2003: Patterns and causes of Atlanta’s urban heat island-initiated precipitation. J. Appl. Meteorol., 42, 1273–1284.Google Scholar
  36. Eun, S.-H., S.-H. Chae, B.-G. Kim, and K.-H. Chang, 2011: Effect of urbanization on the light precipitation in the mid-Korean peninsula. Atmos., 21, 229–241. (in Korean with English abstract)Google Scholar
  37. Farias, W. R. G., O. Pinto, K. P. Naccarato, and I. R. C. A. Pinto, 2009: Anomalous lightning activity over the metropolitan region of São Paulo due to urban effects. Atmos. Res., 91, 485–490.Google Scholar
  38. —, —, I. R. C. A. Pinto, and K. P. Naccarato, 2014: The influence of urban effect on lightning activity: Evidence of weekly cycle. Atmos. Res., 135-136, 370–373.Google Scholar
  39. Fujibe, F., H. Togawa, and M. Sakata, 2009: Long-term change and spatial anomaly of warm season afternoon precipitation in Tokyo. Sci. Online Lett. Atmos., 5, 17–20.Google Scholar
  40. Garstang, J., P. D. Tyson, and G. D. Emmitt, 1975: The structure of heat islands. Rev. Geophys. Space Phys., 13, 139–165.Google Scholar
  41. Gedzelman, S. D., S. Austin, R. Cermak, N. Stefano, S. Partridge, S. Quesenberry, and D. A. Robinson, 2003: Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol., 75, 29–42.Google Scholar
  42. Gero, A. F., and A. J. Pitman, 2006: The impact of land cover change on a simulated storm event in the Sydney basin. J. Appl. Meteor. Climatol., 45, 283–300.Google Scholar
  43. Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteorol., 43, 1038–1056.Google Scholar
  44. Goldreich, Y., 1987: Advertent/inadvertent changes in the spatial distribution of rainfall in the central coastal plain of Israel. Climatic Change, 11, 361–373.Google Scholar
  45. —, and A. Manes, 1979: Urban effects on precipitation patterns in the greater Tel-Aviv area. Arch. Meteor. Geophys. B, 27, 213–224.Google Scholar
  46. Goswami, P., H. Shivappa, and B. S. Goud, 2010: Impact of urbanization on tropical mesoscale events: Investigation of three heavy rainfall events. Meteorol. Z., 19, 385–397.Google Scholar
  47. Guo, X., F. Danhong, and W. Jing, 2006: Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmos. Res., 82, 112–126.Google Scholar
  48. Halfon, N., Z. Levin, and P. Alpert, 2009: Temporal rainfall fluctuations in Israel and their possible link to urban and air pollution effects. Environ. Res. Lett., 4, 025001, doi:10.1088/1748-9326/4/2/025001.Google Scholar
  49. Hamdi, R., D. Degrauwe, and P. Termonia, 2012: Coupling the Town Energy Balance (TEB) scheme to an operational limited-area NWP model: Evaluation for a highly urbanized area in Belgium. Wea. Forecasting, 27, 323–344.Google Scholar
  50. Han, J.-Y., and J.-J. Baik, 2008: A theoretical and numerical study of urban heat island-induced circulation and convection. J. Atmos. Sci., 65, 1859–1877.Google Scholar
  51. —, —, and A. P. Khain, 2012: A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci., 69, 504–520.Google Scholar
  52. Hand, W. H., 2005: Climatology of shower frequency in the British Isles at 5 km resolution. Weather, 60, 153–158.Google Scholar
  53. Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.Google Scholar
  54. Huff, F. A., and S. A. Changnon, Jr., 1973: Precipitation modification by major urban areas. Bull. Amer. Meteor. Soc., 54, 1220–1232.Google Scholar
  55. —, and —, 1986: Potential urban effects on precipitation in the winter and transition seasons at St. Louis, Missouri. J. Climate Appl. Meteor., 25, 1887–1907.Google Scholar
  56. Inoue, T., and F. Kimura, 2004: Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days. Geophys. Res. Lett., 31, L05103, doi:10.1029/2003GL018908.Google Scholar
  57. Jauregui, E., 1997: Heat island development in Mexico City. Atmos. Environ., 31, 3821–3831.Google Scholar
  58. —, and E. Romales, 1996: Urban effects on convective precipitation in Mexico City. Atmos. Environ., 30, 3383–3389.Google Scholar
  59. Jiang, X., and W. Liu, 2007: Numerical simulations of impacts of urbanization on heavy rainfall in Beijing using different land-use data. Acta Meteorol. Sin., 21, 245–255.Google Scholar
  60. Kar, S. K., Y.-A. Liou, and K.-J. Ha, 2007: Characteristics of cloud-toground lightning activity over Seoul, South Korea in relation to an urban effect. Ann. Geophys., 25, 2113–2118.Google Scholar
  61. —, and —, 2009: Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res., 92, 80–87.Google Scholar
  62. Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, doi:10.1088/1748-9326/4/1/015004.Google Scholar
  63. —, N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 1721–1748.Google Scholar
  64. Khemani, L. T., and Bh. V. Ramana Murty, 1973: Rainfall variations in an urban industrial region. J. Appl. Meteorol., 12, 187–194.Google Scholar
  65. Kim, D.-W., Y.-H. Kim, K.-H. Kim, S.-S. Shin, D.-K. Kim, Y.-J. Hwang, J.-I. Park, D.-Y. Choi, and Y.-H. Lee, 2012: Effect of urbanization on rainfall events during the 2010 summer intensive observation period over Seoul metropolitan area. J. Korean Earth Sci. Soc., 33, 219–232. (in Korean with English abstract)Google Scholar
  66. Kim, Y.-H., and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteorol., 41, 651–659.Google Scholar
  67. —, D.-Y. Choi, and D.-E. Chang, 2011: Characteristics of urban meteorology in Seoul metropolitan area of Korea. Atmos., 21, 257–271. (in Korean with English abstract)Google Scholar
  68. Kishtawal, C. M., D. Niyogi, M. Tewari, R. A. Pielke, Sr., and J. M. Shepherd, 2010: Urbanization signature in the observed heavy rainfall climatology over India. Int. J. Climatol., 30, 1908–1916.Google Scholar
  69. Klysik, K., and K. Fortuniak, 1999: Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmos. Environ., 33, 3885–3895.Google Scholar
  70. Kug, J.-S., and M. S. Ahn, 2013: Impact of urbanization on recent temperature and precipitation trends in the Korean peninsula. Asia-Pac. J. Atmos. Sci., 49, 151–159.Google Scholar
  71. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358.Google Scholar
  72. Lacke, M. C., T. L. Mote, and J. M. Shepherd, 2009: Aerosols and associated precipitation patterns in Atlanta. Atmos. Environ., 43, 4359–4373.Google Scholar
  73. Landsberg, H. E., 1970: Man-made climatic changes. Science, 170, 1265–1274.Google Scholar
  74. Lee, S.-H., and J.-J. Baik, 2010: Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol., 100, 227–237.Google Scholar
  75. Levin, Z., and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer, 386 pp.Google Scholar
  76. Li, D., E. Bou-Zeid, M. L. Baeck, S. Jessup, and J. A. Smith, 2013: Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. J. Hydrometeor., 14, 1098–1118.Google Scholar
  77. Li, G., Y. Wang, and R. Zhang, 2008: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosolcloud interaction. J. Geophys. Res., 113, D15211, doi:10.1029/ 2007JD009361.Google Scholar
  78. Li, W., S. Chen, G. Chen, W. Sha, C. Luo, Y. Feng, Z. Wen, and B. Wang, 2011: Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China. Environ. Res. Lett., 6, 034020, doi:10.1088/1748-9326/6/3/034020.Google Scholar
  79. Lin, C.-Y., W.-C. Chen, S. C. Liu, Y. A. Liou, G. R. Liu, and T. H. Lin, 2008: Numerical study of the impact of urbanization on the precipitation over Taiwan. Atmos. Environ., 42, 2934–2947.Google Scholar
  80. —, —, P.-L. Chang, and Y.-F. Sheng, 2011: Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteor. Climatol., 50, 339–353.Google Scholar
  81. Lin, W., L. Zhang, D. Du, L. Yang, H. Lin, Y. Zhang, and J. Li, 2009: Quantification of land use/land cover changes in Pearl River Delta and its impact on regional climate in summer using numerical modeling. Reg. Environ. Change, 9, 75–82.Google Scholar
  82. Lin, Y. L., and R. B. Smith, 1986: Transient dynamics of airflow near a local heat source. J. Atmos. Sci., 43, 40–49.Google Scholar
  83. —, and H.-Y. Chun, 1991: Effects of diabatic cooling in a shear flow with a critical level. J. Atmos. Sci., 48, 2476–2491.Google Scholar
  84. Lowry, W. P., 1998: Urban effects on precipitation amount. Prog. Phys. Geography, 22, 477–520.Google Scholar
  85. Lynn, B., A. Khain, D. Rosenfeld, and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.Google Scholar
  86. Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261–304.Google Scholar
  87. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357–397.Google Scholar
  88. Mažeikis, A., 2013: Urbanization influence on meteorological parameters of air pollution: Vilnius case study. Baltica, 26, 51–56.Google Scholar
  89. Miao, S., F. Chen, Q. Li, and S. Fan, 2011: Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806–825.Google Scholar
  90. Mitra, C., J. M. Shepherd, and T. Jordan, 2012: On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India. Int. J. Climatol., 32, 1443–1454.Google Scholar
  91. Mölders, N., and M. A. Olson, 2004: Impact of urban effects on precipitation in high latitudes. J. Hydrometeor., 5, 409–429.Google Scholar
  92. Morris, C. J. G., and I. Simmonds, 2000: Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. Int. J. Climatol., 20, 1931–1954.Google Scholar
  93. Mote, T. L., M. C. Lacke, and J. M. Shepherd, 2007: Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett., 34, L20710, doi:10.1029/2007GL031903.Google Scholar
  94. Naccarato, K. P., O. Pinto, and I. R. C. A. Pinto, 2003: Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys. Res. Lett., 30, 1674, doi:10.1029/2003GL017496.Google Scholar
  95. Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 1129–1144.Google Scholar
  96. Ntelekos, A. A., J. A. Smith, M. L. Baeck, W. F. Krajewski, A. J. Miller, and R. Goska, 2008: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore MD Metropolitan Region. Water Resour. Res., 44, W08446, doi:10.1029/2007WR006346.Google Scholar
  97. —, —, L. Donner, J. D. Fast, W. I. Gustafson, E. G. Chapman, and W. F. Krajewski, 2009: The effects of aerosols on intense convective precipitation in the northeastern United States. Quart. J. Roy. Meteor. Soc., 135, 1367–1391.Google Scholar
  98. Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 1–24.Google Scholar
  99. —, 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.Google Scholar
  100. Olfe, D. B., and R. L. Lee, 1971: Linearized calculations of urban heat island convection effects. J. Atmos. Sci., 28, 1374–1388.Google Scholar
  101. Orville, R. E., and Coauthors, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 2597–2600.Google Scholar
  102. Pinto, O., I. R. C. A. Pinto, and M. A. S. Ferro, 2013: A study of the longterm variability of thunderstorm days in southeast Brazil. J. Geophys. Res.-Atmos., 118, 5231–5246.Google Scholar
  103. Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.Google Scholar
  104. Rao, G. S. P., A. K. Jaswal, and M. S. Kumar, 2004: Effects of urbanization on meteorological parameters. MAUSAM, 55, 429–440.Google Scholar
  105. Romanov, P., 1999: Urban influence on cloud cover estimated from satellite data. Atmos. Environ., 33, 4163–4172.Google Scholar
  106. Rose, L. S., J. A. Stallins, and M. L. Bentley, 2008: Concurrent cloud-toground lightning and precipitation enhancement in the Atlanta, Georgia (United States), urban region. Earth Interact., 12. [Available online at http://EarthInteractions.org.]Google Scholar
  107. Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108.Google Scholar
  108. —, 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796.Google Scholar
  109. — and A. Givati, 2006: Evidence of orographic precipitation suppression by air pollution-induced aerosols in the western United States. J. Appl. Meteor. Climatol., 45, 893–911.Google Scholar
  110. — U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313.Google Scholar
  111. Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteorol., 42, 716–738.Google Scholar
  112. Ryu, Y.-H., and J.-J. Baik, 2012: Quantitative analysis of factors contributing to urban heat island intensity. J. Appl. Meteor. Climatol., 51, 842–854.Google Scholar
  113. Sanderson, M., and R. Gorski, 1978: The effect of metropolitan Detroit-Windsor on precipitation. J. Appl. Meteorol., 17, 423–427.Google Scholar
  114. Schlünzen, K. H., P. Hoffmann, G. Rosenhagen, and W. Riecke, 2010: Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatol., 30, 1121–1136.Google Scholar
  115. Shafir, H., and P. Alpert, 1990: On the urban orographic rainfall anomaly in Jerusalem-A numerical study. Atmos. Environ., 24B, 365–375.Google Scholar
  116. Shao, H., J. Song, and H. Ma, 2013: Sensitivity of the East Asian summer monsoon circulation and precipitation to an idealized large-scale urban expansion. J. Meteor. Soc. Japan, 91, 163–177.Google Scholar
  117. Shem, W., and M. Shepherd, 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172–189.Google Scholar
  118. Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9. [Available online at http://EarthInteractions.org.]Google Scholar
  119. —, and S. J. Burian, 2003: Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interact., 7. [Available online at http://EarthInteractions.org.]Google Scholar
  120. —, H. Pierce, and A. J. Negri, 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteorol., 41, 689–701.Google Scholar
  121. —, M. Carter, M. Manyin, D. Messen, and S. Burian, 2010: The impact of urbanization on current and future coastal precipitation: A case study for Houston. Environ. Plann. B, 37, 284–304.Google Scholar
  122. Soriano, L. R., and F. Pablo, 2002: Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos. Environ., 36, 2809–2816.Google Scholar
  123. Steiger, S. M., and R. E. Orville, 2003: Cloud-to-ground lightning enhancement over Southern Louisiana. Geophys. Res. Lett., 30, 1975, doi:10.1029/2003GL017923.Google Scholar
  124. —, —, and G. Huffines, 2002: Cloud-to-ground lightning characteristics over Houston, Texas: 1989-2000. J. Geophys. Res., 107, 4117, doi:10.1029/ 2001JD001142.Google Scholar
  125. Svoma, B. M., and R. C. Balling, Jr., 2009: An anthropogenic signal in Phoenix, Arizona winter precipitation. Theor. Appl. Climatol., 98, 315–321.Google Scholar
  126. Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/ 2011RG000369.Google Scholar
  127. Thielen, J., W. Wobrock, A. Gadian, P. G. Mestayer, and J.-D. Creutin, 2000: The possible influence of urban surfaces on rainfall development: a sensitivity study in 2D in the meso-ã-scale. Atmos. Res., 54, 15–39.Google Scholar
  128. Trusilova, K., M. Jung, G. Churkian, U. Karstens, M. Heimann, and M. Claussen, 2008: Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR mesoscale model (MM5). J. Appl. Meteor. Climatol., 47, 1442–1455.Google Scholar
  129. Tumanov, S., A. Stan-Sion, A. Lupu, C. Soci, and C. Oprea, 1999: Influences of the city of Bucharest on weather and climate parameters. Atmos. Environ., 33, 4173–4183. UN, cited 2012: World Urbanization Prospects, The 2011 Revision. [Available online at http://esa.un.org/unup/.]Google Scholar
  130. van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828–850.Google Scholar
  131. Wan, H., Z. Zhong, X. Yang, and X. Li, 2013: Impact of city belt in Yangtze River Delta in China on a precipitation process in summer: A case study. Atmos. Res., 125-126, 63–75.Google Scholar
  132. Westcott, N. E., 1995: Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J. Appl. Meteorol., 34, 1633–1642.Google Scholar
  133. Yang, B., Y. Zhang, and Y. Qian, 2012: Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China. Asia-Pac. J. Atmos. Sci., 48, 227–241.Google Scholar
  134. Yang, K., G. Huang, and N. Tamai, 2000: Surface process and topographic effect on the weather development in Kanto region. Proc., Joint Conf. on Water Resource Engineering and Water Resources Planning and Management 2000, Minneapolis, MN, Environmental and Water Resources Institute of ASCE, 10 pp.Google Scholar
  135. Yonetani, T., 1982: Increase in number of days with heavy precipitation in Tokyo urban area. J. Appl. Meteorol., 21, 1466–1471.Google Scholar
  136. Zhang, C. L., F. Chen, S. G. Miao, Q. C. Li, X. A. Xia, and C. Y. Xuan, 2009: Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res., 114, D02116, doi:10.1029/2008JD010328.Google Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Korea Institute of Atmospheric Prediction SystemsSeoulKorea
  2. 2.School of Earth and Environmental SciencesSeoul National UniversityGwanakgu, SeoulKorea

Personalised recommendations