Advertisement

Asia-Pacific Journal of Atmospheric Sciences

, Volume 49, Issue 2, pp 219–243 | Cite as

The Global/Regional Integrated Model system (GRIMs)

  • Song-You Hong
  • Hoon Park
  • Hyeong-Bin Cheong
  • Jung-Eun Esther Kim
  • Myung-Seo Koo
  • Jihyeon Jang
  • Suryun Ham
  • Seung-On Hwang
  • Byoung-Kwon Park
  • Eun-Chul Chang
  • Haiqin Li
Article

Abstract

A multiscale atmospheric/oceanic model system with unified physics, the Global/Regional Integrated Model system (GRIMs) has been created for use in numerical weather prediction, seasonal simulations, and climate research projects, from global to regional scales. It includes not only the model code, but also the test cases and scripts. The model system is developed and practiced by taking advantage of both operational and research applications. This article outlines the history of GRIMs, its current applications, and plans for future development, providing a summary useful to present and future users.

Key words

Numerical weather prediction seasonal prediction general circulation model regional climate modeling physics parameterization climate modeling GRIMs WRF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model, Preprints. Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.Google Scholar
  2. Byun, U.-Y., S.-Y. Hong, H. Shin, J.-W. Lee, J.-I. Song, S.-J. Hahm, J.-K. Kim, H.-W. Kim, and J.-S. Kim, 2011: WRF-based short-range forecast system of the Korea Air Force: Verification of prediction skill in 2009 summer. Atmosphere, 21, 197–208. (in Korean with English abstract)Google Scholar
  3. Byun, Y.-H., and S.-Y. Hong, 2004: Impact of boundary layer processes on simulated tropical rainfall. J. Climate, 17, 4032–4044.CrossRefGoogle Scholar
  4. ____, and _____, 2007: Improvements in the subgrid-scale representation of moist convection in a cumulus parameterization scheme: The single-column test and its impact on seasonal prediction. Mon. Wea. Rev., 135, 2135–2154.CrossRefGoogle Scholar
  5. Campana, K. A., Y.-T. Hou, K. E. Mitchell, S.-K. Yang, and R. Cullather, 1994: Improved diagnostic cloud parameterization in NMC’s global model. 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 324–325.Google Scholar
  6. Cha, D. H., D. K. Lee, and S. Y. Hong, 2008: Impact of boundary layer processes on seasonal simulation of the East Asian summer monsoon using a regional climate model. Meteor. Atmos. Phys., 100, 53–72.CrossRefGoogle Scholar
  7. Chang, E.-C., and S.-Y. Hong, 2011: Projected climate change scenario over East Asia by a regional spectral model. J. Korean Earth Sci. Soc., 32, 770–783.CrossRefGoogle Scholar
  8. ____, S.-W. Yeh, S.-Y. Hong, J.-E. Kim, and R. Wu, 2012: Analysis on a decadal shift of precipitation over East Asia in the mid-1990s using a global downscaled precipitation dataset. J. Climate, in review.Google Scholar
  9. Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640.CrossRefGoogle Scholar
  10. Cheong, H.-B., 2000a: Double Fourier series on a sphere: Applications to elliptic and vorticity equations. J. Comput. Phys., 157, 327–349.CrossRefGoogle Scholar
  11. ____, 2000b: Application of double Fourier series to the shallow-water equations on a sphere. J. Comput. Phys., 165, 261–287.CrossRefGoogle Scholar
  12. ____, 2006: A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299–1315.CrossRefGoogle Scholar
  13. Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762–772.CrossRefGoogle Scholar
  14. ____, and K.-T. Lee, 1996: Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 53, 1203–1208.CrossRefGoogle Scholar
  15. ____, and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Vol. 15, NASA/TM-1999-104606, 38 pp.Google Scholar
  16. ____, and K.-T. Lee, 2005: A parameterization of the effective layer emission for infrared radiation calculations. J. Atmos. Sci., 62, 531–541.CrossRefGoogle Scholar
  17. ____, S.-C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159–169.CrossRefGoogle Scholar
  18. Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299–3310.CrossRefGoogle Scholar
  19. Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the Coupled Model Intercomparison Project. Global Planet. Change, 37, 103–133.CrossRefGoogle Scholar
  20. Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605–4630.CrossRefGoogle Scholar
  21. Daley, R., 1991: Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series, Vol. 2, Cambridge University, 457 pp.Google Scholar
  22. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851.CrossRefGoogle Scholar
  23. Fels, S. B., and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 1475–1488.CrossRefGoogle Scholar
  24. Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphereocean coupling on the predictability of monsoon intraseasonal oscillation. J. Atmos. Sci., 64, 157–174.CrossRefGoogle Scholar
  25. Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29–55.CrossRefGoogle Scholar
  26. Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288–296.CrossRefGoogle Scholar
  27. Ham, S., S.-Y. Hong, Y.-H. Byun, and J. Kim, 2009: Effects of precipitation physics algorithms on a simulated climate in a general circulation model. J. Atmos. Sol. Terr. Phys., 71, 1924–1934.CrossRefGoogle Scholar
  28. ____, S.-J. Park, C.-H. Bang, B.-J. Jung, and S.-Y. Hong, 2005: Intercomparison of the East-Asian summer monsoon on 11–18 July 2004, simulated by WRF, MM5, and RSM models. Atmosphere, 15, 91–99. (in Korean with English abstract)Google Scholar
  29. Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520–533.CrossRefGoogle Scholar
  30. Hendon, H. H., 2000: Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–3952.CrossRefGoogle Scholar
  31. Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481–1496.CrossRefGoogle Scholar
  32. ____, and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.CrossRefGoogle Scholar
  33. ____, and _____, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 2599–2620.CrossRefGoogle Scholar
  34. ____, and A. Leetmaa, 1999: An evaluation of the NCEP RSM for regional climate modeling. J. Climate, 12, 592–609.CrossRefGoogle Scholar
  35. ____, and E. Kalnay, 2000: Role of sea surface temperature and soilmoisture feedback in the 1998 Oklahoma-Texas drought. Nature, 408, 842–844.CrossRefGoogle Scholar
  36. ____, and H.-L. Pan, 2000: Impact of soil moisture anomalies on seasonal, summertime circulation over North America in a regional climate model. J. Geophys. Res., 105, 29625–29634.CrossRefGoogle Scholar
  37. ____, and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific J. Atmos. Sci., 42, 129–151.Google Scholar
  38. ____, and E.-C. Chang, 2012: Spectral nudging sensitivity experiments in a regional climate model. Asia-Pacific J. Atmos. Sci., 48, 345–355.CrossRefGoogle Scholar
  39. ____, and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6–ES9.CrossRefGoogle Scholar
  40. ____, H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621–2639.CrossRefGoogle Scholar
  41. ____, _____, and D.-K. Lee, 1999: Evaluation of a regional spectral model for the East Asian monsoon case studies for July 1987 and 1988. J. Meteor. Soc. Japan, 77, 553–572.Google Scholar
  42. ____, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.CrossRefGoogle Scholar
  43. ____, J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523–531.CrossRefGoogle Scholar
  44. ____, S. Ham, Y.-H. Byun, and J. Kim, 2009a: Investigation of icecloud radiation interaction in a general circulation model. Asia-Pacific J. Atmos. Sci., 45, 391–409.Google Scholar
  45. ____, K.-S. S. Lim, J.-H. Kim, J.-O. J. Lim, and J. Dudhia, 2009b: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteor. Climatol., 48, 61–76.CrossRefGoogle Scholar
  46. ____, _____, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010a: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, doi:707210.701155/702010/707253.Google Scholar
  47. ____, N.-K. Moon, K.-S. Lim, and J.-W. Kim, 2010b: Future climate change scenarios over Korea using a multi-nested downscaling system: A pilot study. Asia-Pacific J. Atmos. Sci., 46, 425–435.CrossRefGoogle Scholar
  48. ____, M.-S. Koo, J.-E. Kim, M.-S. Cho, J.-H. Kang, and T.-J. Oh, 2011a: An evaluation of the system software dependency of a global spectral model. Extended Abstract, The 2011 Korean Meteorological Society Spring Conf., Kongju, Korea, Korean Meteor. Soc., 2–3.Google Scholar
  49. ____, H. M. Kim, J.-E. Kim, S.-O. Hwang, and H. Park, 2011b: The impact of model uncertainties on analyzed data in a global data assimilation system. Terr. Atmos. Ocean. Sci., 22, 41–47.CrossRefGoogle Scholar
  50. ____, J. Jang, H. H. Shin, and J. Lee, 2012: An explicitly-coupled shallow convection parameterization with planetary boundary processes. Preprints, The 12th WRF Workshop, Boulder, CO, NCAR.Google Scholar
  51. Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637–655.CrossRefGoogle Scholar
  52. Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36–50.CrossRefGoogle Scholar
  53. ____, D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.CrossRefGoogle Scholar
  54. Hurkmans, R., W. Terink, R. Uijlenhoet, P. Torfs, D. Jacob, and P. A. Troch, 2010: Changes in streamflow dynamics in the Rhine basin under three high-resolution regional climate scenarios. J. Climate, 23, 679–699.CrossRefGoogle Scholar
  55. Hwang, S.-O., and S.-Y. Hong, 2010: Investigation of moisture field assimilation in global reanalysis. J. Atmos. Sol. Terr. Phys., 72, 556–564.CrossRefGoogle Scholar
  56. ____, and _____, 2012: The impact of observation systems on medium-range weather forecasting in a global forecast system. Asia- Pacific J. Atmos. Sci., 48, 159–170.CrossRefGoogle Scholar
  57. ____, _____, and M. Kanamitsu, 2010: Impacts of assimilated data on reanalysis climatology. Asia-Pacific J. Atmos. Sci., 46, 185–197.CrossRefGoogle Scholar
  58. Jeon, J.-H., S.-Y. Hong, H.-Y. Chun, and I.-S. Song, 2010: Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pacific J. Atmos. Sci., 46, 1–10.CrossRefGoogle Scholar
  59. Juang, H.-M. H., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122, 3–26.CrossRefGoogle Scholar
  60. ____, and S.-Y. Hong, 2001: Sensitivity of the NCEP regional spectral model to domain size and nesting strategy. Mon. Wea. Rev., 129, 2904–2922.CrossRefGoogle Scholar
  61. ____, _____, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78, 2125–2143.CrossRefGoogle Scholar
  62. Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.Google Scholar
  63. ____, and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  64. Kanamaru, H., and M. Kanamitsu, 2007: Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon. Wea. Rev., 135, 334–350.CrossRefGoogle Scholar
  65. Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335–342.CrossRefGoogle Scholar
  66. ____, and S.-O. Hwang, 2006: The role of sea surface temperature in reanalysis. Mon. Wea. Rev., 134, 532–552.CrossRefGoogle Scholar
  67. ____, and Coauthors, 2002a: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 1019–1037.CrossRefGoogle Scholar
  68. ____, W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002b: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  69. ____, K. Yoshimura, Y.-B. Yhang, and S.-Y. Hong, 2010: Errors of interannual variability and trend in dynamical downscaling of reanalysis. J. Geophys. Res., 115, D17115.CrossRefGoogle Scholar
  70. Kang, H.-S., and S.-Y. Hong, 2008: Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J. Geophys. Res., 113, D15119.CrossRefGoogle Scholar
  71. Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108, 3079, doi: 10.1029/2000JC000736.CrossRefGoogle Scholar
  72. Kim, E.-J., and S.-Y. Hong, 2010a: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118.CrossRefGoogle Scholar
  73. Kim, J.-E., and S.-Y. Hong, 2007: Impact of soil moisture anomalies on summer rainfall over East Asia: A regional climate model study. J. Climate, 20, 5732–5743.CrossRefGoogle Scholar
  74. ____, and _____, 2010b: Assessment of hydroclimate predictability under global warming. Extended Abstract, The 2010 Korean Meteorological Society Fall Conf., Pusan, Korea, Korean Meteor. Soc., 50–51.Google Scholar
  75. ____, and _____, 2012: A global atmospheric analysis dataset downscaled from the NCEP-DOE reanalysis. J. Climate, 25, 2527–2534.CrossRefGoogle Scholar
  76. Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902.CrossRefGoogle Scholar
  77. Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267.CrossRefGoogle Scholar
  78. Koo. M.-S., S.-Y. Hong, and J. Kim, 2009: An evaluation of the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) data over South Korea. Asia-Pacific J. Atmos. Sci., 45, 265–282.Google Scholar
  79. Lee, J.-L., and A. E. MacDonald, 2009: A finite-volume icosahedral shallow-water model on a local coordinate. Mon. Wea. Rev., 137, 1422–1437.CrossRefGoogle Scholar
  80. Li, H., M. Kanamitsu, and S.-Y. Hong, 2012: California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system. J. Geophys. Res., 117, D12118, doi:10.1029/2011JD-017372.CrossRefGoogle Scholar
  81. Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202.CrossRefGoogle Scholar
  82. Majewski, D., D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, W. Wergen, and J. Baumgardner, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130, 319–338.CrossRefGoogle Scholar
  83. Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 978–1002.CrossRefGoogle Scholar
  84. Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.CrossRefGoogle Scholar
  85. Neale, R. B., and B. J. Hoskins, 2001: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1, 101–107.CrossRefGoogle Scholar
  86. Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401–427.CrossRefGoogle Scholar
  87. Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 692 pp. [Available oneline at http://www.gfdl.noaa.gov/~smg/MOM/web/guide_parent/guide_parent.html].Google Scholar
  88. Pan, H. L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185–202.CrossRefGoogle Scholar
  89. ____, and W.-S. Wu, 1995: Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-Range Forecast Model. NMC Office Note 409, 40 pp.Google Scholar
  90. Park, B.-K., and S.-Y. Hong, 2010: Impacts of initial estimate and physical proccesses on the weather forecast. Extended Abstract, The 2010 Korean Meteorological Society Fall Conf., Pusan, Korea, Korean Meteor. Soc., 180–181.Google Scholar
  91. Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Japan, 85, 151–169.CrossRefGoogle Scholar
  92. Rabier, F., 2005: Overview of global data assimilation developments in numerical weather-prediction centres. Quart. J. Roy. Meteor. Soc., 131, 3215–3233.CrossRefGoogle Scholar
  93. Randall, D. A., R. Heikes, and T. Ringer, 2000: Global Atmospheric Modeling using a Geodesic Grid with an Isentropic Vertical Coordinate. General Circulation Model Development. Academic Press, New York, 509-538 pp.Google Scholar
  94. Ringler, T. D., R. P. Heikes, and D. A. Randall, 2000: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores. Mon. Wea. Rev., 128, 2471–2490.CrossRefGoogle Scholar
  95. Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Tech. Rep. 349, Max Planck Institute for Meteorology, 127 pp.Google Scholar
  96. Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517.CrossRefGoogle Scholar
  97. Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 108, 1279–1292.CrossRefGoogle Scholar
  98. Seol, K.-H., and S.-Y. Hong, 2009: Relationship between the Tibetan snow in spring and the East Asian summer monsoon in 2003: A global and regional modeling study. J. Climate, 22, 2095–2110.CrossRefGoogle Scholar
  99. ____, _____, and M. Kanamitsu, 2010: Investigation of land surface process over the ARM SGP in 1997 summer using a single-column model. Preprints, 22nd Conf. on Climate Variability and Change, Atlanta, GA, Amer. Meteor. Soc.Google Scholar
  100. Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347–404.CrossRefGoogle Scholar
  101. Shimpo, A., M. Kanamitsu, S. F. Iacobellis, and S.-Y. Hong, 2008: Comparison of four cloud schemes in simulating the seasonal mean field forced by the observed sea surface temperature. Mon. Wea. Rev., 136, 2557–2575.CrossRefGoogle Scholar
  102. Shin, H., and S.-Y. Hong, 2009: Quantitative precipitation forecast experiments of heavy rainfall over Jeju Island on 14–16 September 2007 using the WRF model. Asia-Pacific J. Atmos. Sci., 45, 71–89.Google Scholar
  103. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.Google Scholar
  104. Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105.CrossRefGoogle Scholar
  105. Song, J.-H., H.-S. Kang, Y.-H. Byun, and S.-Y. Hong, 2010: Effects of the Tibetan plateau on the Asian summer monsoon: a numerical case study using a regional climate model. Int. J. Climatol., 30, 743–759.Google Scholar
  106. Stuhne, G. R., and W. R. Peltier, 2006: A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: A new numerical structure for ocean general circulation modeling. J. Comput. Phys., 213, 704–729.CrossRefGoogle Scholar
  107. Sun, W.-Y., K.-H. Min, and J.-D. Chern, 2011: Numerical study of 1998 late summer flood in East Asia. Asia-Pacific J. Atmos. Sci., 47, 123–135.CrossRefGoogle Scholar
  108. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.CrossRefGoogle Scholar
  109. Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large-scale flow in a general circulation model. Beitr. Phys. Atmos., 57, 216–239.Google Scholar
  110. Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357–400.CrossRefGoogle Scholar
  111. Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129–148.CrossRefGoogle Scholar
  112. Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.CrossRefGoogle Scholar
  113. Wang, W., 2012: Evaluation of convective parameterizations at different grid-sizes in the WRF model. Preprint, The 6th East Asia WRF Workshop and Tutorial, Seoul, Korea, Seoul Natl. Univ.Google Scholar
  114. Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.Google Scholar
  115. WMO, 2010: Manual on the global data-processing and forecasting system, Volume I - Global aspects. World Meteorological Organization Document WMO-No. 485. [Available online at http://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en_colour.pdf].Google Scholar
  116. Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905–2916.CrossRefGoogle Scholar
  117. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.CrossRefGoogle Scholar
  118. Yhang, Y.-B., and S.-Y. Hong, 2008: Improved physical processes in a regional climate model and their impact on the simulated summer monsoon circulations over East Asia. J. Climate, 21, 963–979.CrossRefGoogle Scholar
  119. Yoshimura, K., and M. Kanamitsu, 2008: Dynamical global downscaling of global reanalysis. Mon. Wea. Rev., 136, 2983–2998.CrossRefGoogle Scholar
  120. Yulaeva, E., M. Kanamitsu, and J. Roads, 2008: The ECPC coupled prediction model. Mon. Wea. Rev., 136, 295–316.CrossRefGoogle Scholar
  121. Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 1931–1953.CrossRefGoogle Scholar
  122. Zheng, Y. D. E. Waliser, W. F. Stern, and C. Jones, 2004: The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17, 4109–4134.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Song-You Hong
    • 1
  • Hoon Park
    • 1
    • 2
  • Hyeong-Bin Cheong
    • 3
  • Jung-Eun Esther Kim
    • 4
  • Myung-Seo Koo
    • 1
  • Jihyeon Jang
    • 1
  • Suryun Ham
    • 1
  • Seung-On Hwang
    • 2
  • Byoung-Kwon Park
    • 1
    • 2
  • Eun-Chul Chang
    • 5
  • Haiqin Li
    • 6
  1. 1.Department of Atmospheric SciencesYonsei UniversitySeoulKorea
  2. 2.Numerical Weather Prediction CenterKorea Meteorological AdministrationSeoulKorea
  3. 3.Department of Environmental Atmospheric SciencesPukyong National UniversityPusanKorea
  4. 4.National Oceanic and Atmospheric Administration (NOAA)/Earth System Research Laboratory (ESRL)BoulderUSA
  5. 5.Atmosphere and Ocean Research InstituteUniversity of TokyoKashiwaJapan
  6. 6.Center for Ocean-Atmospheric Prediction StudiesFlorida State UniversityTallahasseeUSA

Personalised recommendations