Asia-Pacific Journal of Atmospheric Sciences

, Volume 48, Issue 3, pp 253–257 | Cite as

The global temperature anomaly and solar North-South asymmetry

  • Il-Hyun Cho
  • Young-Sil Kwak
  • Heon-Young ChangEmail author
  • Kyung-Suk Cho
  • Yeon-Han Kim
  • Young-Deuk Park


We investigate whether the global temperature anomaly is associated with the solar North-South asymmetry using data archived approximately for five solar cycles. We are motivated by both the accumulating evidence for the connection of Galactic cosmic-rays (GCRs) to the cloud coverage and recent finding of the association of GCR influx and the solar North-South asymmetry. We have analyzed the data of the observed sunspot, the GCR influx observed at the Moscow station, and the global temperature anomaly. We have found that the mean global temperature anomaly is systematically smaller (∼0.56 in the unit of its standard deviation) during the period when the solar northern hemisphere is more active than the solar southern hemisphere. The difference in the mean value of the global temperature anomaly for the two data sets sub-sampled according to the solar North-South asymmetry is large and statistically significant. We suggest the solar North-South asymmetry is related to the global temperature anomaly through modulating the amount of GCR influx. Finally, we conclude by discussing its implications on a climate model and a direction of future work.

Key words

Galactic cosmic rays solar north-south asymmetry climate change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benestad, R. E., and G. A. Schmidt, 2008: Solar trends and global warming, J. Geophys. Res., 114, D14101.CrossRefGoogle Scholar
  2. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111(D12), D12106.CrossRefGoogle Scholar
  3. Carslaw, K. S., R. G. Harrison, and J. Kirkby, 2002: Cosmic Rays, Clouds, and Climate, Science, 298(5599), 1732–1737.CrossRefGoogle Scholar
  4. Chang, H.-Y., 2009: Periodicity of North South asymmetry of sunspot area revisited: Cepstrum analysis, New Astron., 14(2), 133–138.CrossRefGoogle Scholar
  5. Cho, I.-H., Y.-S. Kwak, K.-S. Cho, H.-S. Choi, and H.-Y. Chang, 2009: On the Relation Between the Sun and Climate Change with the Solar North-South Asymmetry, J. Astron. Space Sci., 26(1), 25–30.CrossRefGoogle Scholar
  6. —, —, H.-Y. Chang, K.-S. Cho, Park Y.-D. and H.-S. Choi, 2011: Dependence of GCRs influx on the Solar North-South Asymmetry, J. Atmos. Sol.-Terr. Phys., 73, 1723–1726.CrossRefGoogle Scholar
  7. Egorova, L. V., V. Y. Vovk, and O. A. Troshichev, 2000: Influence of variations of the cosmic rays on atmospheric pressure and temperature in the Southern geomagnetic pole region, J. Atmos. Sol.-Terr. Phys., 62(11), 955–966.CrossRefGoogle Scholar
  8. Emmert, J. T., and J. M. Picone, 2010: Climatology of globally averaged thermospheric mass density, J. Geophys. Res., 115(A9), A09326.CrossRefGoogle Scholar
  9. Fligge, M., S. K. Solanki, and Y. C. Unruh, 2000: Modeling irradiance variations from the surface distribution of the solar magnetic field, Astron. Astrophys., 353, 380–388.Google Scholar
  10. Forbush, S. E., 1954: World-Wide Cosmic-Ray Variations, 1937–1952, J. Geophys. Res., 59(4), 525–542.CrossRefGoogle Scholar
  11. Friis-Christensen, E., and K. Lassen, 1991: Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate, Science, 254(5032), 698–700.CrossRefGoogle Scholar
  12. Fröhlich, C., 2006: Solar irradiance variability since 1978: Revision of the PMOD composite during solar cycle 21, Space Sci. Rev., 125, 53–65.CrossRefGoogle Scholar
  13. Georgieva, K., 2002: Long-term changes in atmospheric circulation, earth rotation rate and north-south solar asymmetry, Phys. Chem. Earth, 27(6–8), 433–440.Google Scholar
  14. —, B. Kirov, and C. Bianchi, 2005: Long-term variations in the correlation between solar activity and climate, Memorie della Societá Astronomica Italiana, 76, 965.Google Scholar
  15. —, —, P. Tonev, V. Guineva, and D. Atanasov, 2007: Long-term variations in the correlation between NAO and solar activity: The importance of north south solar activity asymmetry for atmospheric circulation, Adv. Space Res., 40(7), 1152–1166.CrossRefGoogle Scholar
  16. Goode, P. R., and Coauthors, 2003: Sunshine, Earthshine and Climate Change: II. Solar Origins of Variations in the Earth’s Albedo, J. Korean. Astron. Soc., 36(S1), S83–S91.Google Scholar
  17. Haigh, J. D., 2007: The Sun and the Earth’s Climate, Liv. Rev. Sol. Phys., 4(2).Google Scholar
  18. Hansen, J., and Coauthors, 2002: Climate forcings in Goddard Institute for Space Studies SI2000 simulations, J. Geophys. Res., 107(D18), ACL 2–1.CrossRefGoogle Scholar
  19. Hathaway, D. H., and R. M. Wilson, 2004: What the Sunspot Record Tells Us About Space Climate, Sol. Phys., 224(1–2), 5–19.CrossRefGoogle Scholar
  20. Intergovernmental Panel on Climate Change, 2007: Climate Change 2008: The Physical Science Basis. Cambridge University Press. [Total page range].Google Scholar
  21. Javaraiah, J., and R. K. Ulrich, 2006: Solar-Cycle-Related Variations in the Solar Differential Rotation and Meridional Flow: A Comparison, Sol. Phys., 237(2), 245–265.CrossRefGoogle Scholar
  22. Jokipii, J. R., 1989: The physics of cosmic-ray modulation, Adv. Space Res., 9(12), 105–119.CrossRefGoogle Scholar
  23. Krivova, N. A., S. K. Solanki, M. Fligge, and Y. C. Unruh, 2003: Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause?, Astron. Astrophys., 399, L1–L4.CrossRefGoogle Scholar
  24. Marsh, N. D., and H. Svensmark, 2000: Low Cloud Properties Influenced by Cosmic Rays, Phys. Rev. Lett., 85(23), 5004–5007.CrossRefGoogle Scholar
  25. Nagashima, K., and L. Morishita, 1980: Twenty-two year modulation of cosmic rays associated with polarity reversal of polar magnetic field of the sun, Planet. Space Sci., 28, 195–205.CrossRefGoogle Scholar
  26. Ney, E. P., 1959: Cosmic Radiation and the Weather, Nature, 183(4659), 451–452.CrossRefGoogle Scholar
  27. Pudovkin, M. I., 2004: Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron., 5(2), GI2007.CrossRefGoogle Scholar
  28. —, S. V. Veretenenko, R. Pellinen, and E. Kyrö, 1997: Meteorological characteristic changes in the high-latitudinal atmosphere associated with forbush decreases of the galactic cosmic rays, Adv. Space Res., 20(6), 1169–1172.CrossRefGoogle Scholar
  29. Roldugin, V. C., and B. A. Tinsley, 2004: Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys., 66(13–14), 1143–1149.CrossRefGoogle Scholar
  30. Sabbah, I., and M. L. Duldig, 2007: Solar Polarity Dependence of Cosmic Ray Power Spectra Observed with Mawson Underground Muon Telescopes, Sol. Phys., 243(2), 231–235.CrossRefGoogle Scholar
  31. Scafetta, N., 2010: Empirical analysis of the solar contribution to global mean air surface temperature change, J. Atmos. Sol.-Terr. Phys., 71, 17–18, 1916–1923.Google Scholar
  32. Solanki, S. K., N. A. Krivova, and T. Wenzler, 2005: Irradiance models. Adv. Space Res., 35(3), 376–383.CrossRefGoogle Scholar
  33. Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl, and B. D. Santer, 2006: Observational constraints on past attributable warming and predictions of future global warming, J. Climate., 19, 3055–3069.CrossRefGoogle Scholar
  34. Svensmark, H., 2007: Cosmoclimatology: a new theory emerges, Astron. Geophys., 48(1), 1.18–1.24.CrossRefGoogle Scholar
  35. —, and E. Friis-Christensen, 1997: Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys., 59, 1225–1232.CrossRefGoogle Scholar
  36. Troshichev, O., 2008: Solar wind influence on atmospheric processes in winter Antarctica, J. Atmos. Sol.-Terr. Phys., 70(18), 2381–2396.CrossRefGoogle Scholar
  37. Usoskin, I. G., 2008: A History of Solar Activity over Millennia, Solar Physics, 5(3).Google Scholar
  38. Wenzler, T., S. K. Solanki, N. A. Krivova, and C. Fröhlich, 2006: Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields, Astron. Astrophys., 460, 583–595.CrossRefGoogle Scholar
  39. Zaatri, A., R. Komm, H. González, R. Howe, and T. Corbard, 2006: North South Asymmetry of Zonal and Meridional Flows Determined From Ring Diagram Analysis of Gong ++ Data, Sol. Phys., 236(2), 227–244.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Netherlands 2012

Authors and Affiliations

  • Il-Hyun Cho
    • 1
    • 2
  • Young-Sil Kwak
    • 1
  • Heon-Young Chang
    • 3
    • 4
    Email author
  • Kyung-Suk Cho
    • 1
  • Yeon-Han Kim
    • 1
  • Young-Deuk Park
    • 1
  1. 1.Korea Astronomy and Space Science InstituteDaejeonKorea
  2. 2.University of Science and TechnologySeoulKorea
  3. 3.Department of Astronomy and Atmospheric SciencesKyungpook National UniversityDaeguKorea
  4. 4.Department of Astronomy and Atmospheric SciencesKyungpook National UniversityDaeguKorea

Personalised recommendations