Meteorological responses to Mt. Baekdu volcanic eruption over east asia in an offline global climate-chemistry model: A pilot study

  • Byung-Kwon Moon
  • Daeok YounEmail author
  • Rokjin J. Park
  • Sang-Wook Yeh
  • Won-Mo Kim
  • Young-Ho Kim
  • Jaein I. Jeong
  • Jung-Hun Woo
  • Eul Gyu Im
  • Chang-Keun Song


We examine the meteorological responses due to the probable eruption of Mt. Baekdu using an off-line Climate-Chemistry model that is composed of the National Center for Atmospheric Research (NCAR) Climate Atmosphere Model version 3 (CAM3) and a global chemistry transport model (GEOS-Chem). Using the aerosol dataset from the GEOS-Chem driven by GEOS-5 meteorology, experiment and control simulations of the climate model are performed and their meteorological differences between the two simulations are analyzed. The magnitudes of volcanic eruption and column injection height were presumably set to 1/200 of the Mt. Pinatubo eruption and 9 km, respectively. Significant temperature drop in the lower troposphere (850 hPa), which is mainly due to a direct effect of prescribed volcanic aerosols from Mt. Baekdu, has been simulated up to about −4 K. The upper atmosphere (150 hPa) right above the volcano, however, shows significant warming due to the absorption of the infrared radiation by volcanic aerosols. As a result of the volcanic eruption in the climate model, wave-like patterns are shown in both the geopotential height and horizontal wind. The changes in the lower atmospheric temperature are well associated with the modification of the atmospheric circulation through the hydrostatic balance. In spite of limitations in our current simulations due to several underlying assumptions, our results could give a clue to understanding the meteorological impacts from Mt. Baekdu eruptions that are currently attracting considerable public attention.

Key words

Mt. Baekdu volcanic eruption meteorological response climate model chemistry-transport model 


  1. Andronova, N. G., E. V. Rozanov, F. Yang, M. E. Schlesinger, and G. L. Stenchikov, 1999: Radiative forcing by volcanic aerosols from 1850 through 1994. J. Geophys. Res., 104, 16807–16826.CrossRefGoogle Scholar
  2. Bluth, G. J. S., S. D. Doiron, A. J. Krueger, L. S. Walter, and C. C. Schnetzler, 1992: Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions. Geophys. Res. Lett., 19, 151–154.CrossRefGoogle Scholar
  3. Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143.CrossRefGoogle Scholar
  4. Dickinson, R. E., and Coauthors, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate., 19, 2302–2324.CrossRefGoogle Scholar
  5. Graf, H. F., I. Kirchner, A. Robock, and I. Schult, 1993: Pinatubo eruption winter climate effects: Model versus observations. Climate Dyn., 9, 81–93.Google Scholar
  6. ____, and C. Timmreck, 2001: A general climate model simulation of the aerosol radiative effects of the Laacher See eruption (10,900 B.C.). J. Geophys. Res., 106, 14747–14756.CrossRefGoogle Scholar
  7. Groisman, P. Y., 1992: Possible regional climate consequences of the Pinatubo eruption: An empirical approach. Geophys. Res. Lett., 19, 1603–1606.CrossRefGoogle Scholar
  8. Guo, Z., J. Liu, J. Han, H. He, G. Dai, and H. You, 2006: Effect of gas emissions from Tianchi volcano (NE China) on environment and its potential volcanic hazards. Sci. China Ser. D., 49, 304–310.CrossRefGoogle Scholar
  9. Free, Melissa, and L. John, 2009: Effect of volcanic eruptions on the vertical temperature profile in radiosonde data and climate models. J. Climate, 22, 2925–2939.CrossRefGoogle Scholar
  10. Hansen, J., A. Lacis, R. Ruedy, and M. Sato, 1992: Potential climate impact of Mount Pinatubo eruption. Geophys. Res. Lett., 19, 215–218.CrossRefGoogle Scholar
  11. Horn, S., and H.-U. Schmincke, 2000: Volatile emission during the eruption of Baitoushan volcano (China/North Korea ca. 969 AD). B. Volcanol., 61, 537–555.Google Scholar
  12. Ji, L., J. Xu, X. Lin, and P. Luan, 2010: Application of satellite thermal remote sensing in monitoring magmatic activity of Changbaishan Tianchi volcano. Chinese Sci. Bull., 55, 2731–2737.CrossRefGoogle Scholar
  13. Li, X., M. Li, and R. Liu, 1996: The climate effects of the Changbaishan-Tianchi Volcano eruption. Seismological and Geomagnetic Observation and Res., 17, 12–18. (in Chinese with English abstract)Google Scholar
  14. Park, R. J., D. J. Jacob, B. D. Field, R. M. Yantosca, and M. Chin, 2004: Natural and trans-boundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. J. Geophys. Res., 109, D15204.CrossRefGoogle Scholar
  15. Ramachandran, S., V. Ramaswamy, G. L. Stenchikov, and A. Robock, 2000: Radiative impact of the Mount Pinatubo volcanic eruption: Lower stratospheric response. J. Geophys. Res., 105, 24409–24429.CrossRefGoogle Scholar
  16. Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.CrossRefGoogle Scholar
  17. Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219.CrossRefGoogle Scholar
  18. ____, and J. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8, 1086–1103.CrossRefGoogle Scholar
  19. Sigurdsson, H., and S. Carey, 1989: Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora Volcano. B. Volcanol., 51, 243–270.CrossRefGoogle Scholar
  20. Stenchikov, G., I. Kirchner, A. Robock, H.-G. Graf, J. C. Antuna, R. G. Grainger, A. Lambert, and L. Thomson, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103, 13837–13857.CrossRefGoogle Scholar
  21. ____, A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, 2002: Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107, 4803.CrossRefGoogle Scholar
  22. Stothers, R. B, 1984: The great Tambora eruption in 1815 and its aftermath. Science, 224, 1191–1198.CrossRefGoogle Scholar
  23. Timmreck, C., H.-F. Graf, and I. Kirchner, 1999: A one and half year interactive MA/ECHAM4 simulation of Mount Pinatubo Aerosol. J. Geophys. Res., 104, 9337–9359.CrossRefGoogle Scholar
  24. ____, and _____, 2006: The initial dispersal and radiative forcing of a Northern Hemisphere mid-latitude super volcano: a model study. Atmos. Chem. Phys., 6, 35–49.CrossRefGoogle Scholar
  25. Wallace, P. J., 2001: Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies. J. Volcanol. Geoth. Res., 108, 85–106.CrossRefGoogle Scholar
  26. Wei, H., R. Liu, and X. Li, 1997: Ignimbrite-forming eruptions from Tianchi Volcano and their climate effect. Earth Science Frontiers (China University of Geosciences, Beijing), 4, 263–266 (in Chinese with English abstract).Google Scholar
  27. ____, S. J. Sparks, R. Liu, Q. Fan, Y. Wang, H. Hong, H. Zhang, H. Chen, C. Jiang, J. Dong, Y. Zheng, and Y. Pan, 2003: Three active volcanoes in China and their hazards. J. Asian Earth Sci., 21, 525–526.CrossRefGoogle Scholar
  28. Wu, J.-P., Y.-H. Ming, H.-R. Zhang, W. Su, and Y.-M. Liu, 2005: Seismic activity at the Changbaishan Tianchi volcano in the summer of 2002. Chinese J. Geophys-CH., 48, 621–628 (in Chinese with English abstract).Google Scholar
  29. ____, _____, _____, G.-M. Liu, L.-H. Fang, W. Su, and W.-L. Wang, 2007: Earthquakes swarm activity in Changbaishan Tianchi volcano. Chinese J. Geophys., 50, 938–946.Google Scholar
  30. ____, _____, L. Fang, and W. Wang, 2009: S-wave velocity structure beneath Changbaishan volcano inferred from receiver function. Earthq. Sci., 22, 409–416.CrossRefGoogle Scholar
  31. Yang, F., and M. E. Schlesinger, 1999: On the surface and atmospheric temperature changes following the 1991 Pinatubo volcanic eruption: A GCM study. J. Geophys. Res., 104, 9337–9360.CrossRefGoogle Scholar
  32. Youn, D., and Coauthors, 2011: Impacts of aerosols on regional meteorology due to Siberian forest fires in May 2003. Atmos. Environ. 45, 1407–1412.CrossRefGoogle Scholar
  33. Zou, H., Fan Q., and Zhang H., 2010: Rapid development of the great Millennium eruption of Changbaishan (Tianchi) Volcano, China/North Korea: Evidence from U-Th zircon dating. Lithos, 119, 289–296.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Netherlands 2011

Authors and Affiliations

  • Byung-Kwon Moon
    • 1
  • Daeok Youn
    • 2
    • 9
    Email author
  • Rokjin J. Park
    • 3
  • Sang-Wook Yeh
    • 4
  • Won-Mo Kim
    • 3
    • 5
  • Young-Ho Kim
    • 5
  • Jaein I. Jeong
    • 3
  • Jung-Hun Woo
    • 6
  • Eul Gyu Im
    • 7
  • Chang-Keun Song
    • 8
  1. 1.Division of Science Education/Institute of Fusion ScienceChonbuk National UniversityJeonjuKorea
  2. 2.Environment Appraisal CenterKorea Environment InstituteSeoulKorea
  3. 3.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
  4. 4.Department of Environmental Marine ScienceHanyang UniversityAnsanKorea
  5. 5.Climate Change and Coastal Disaster Research DepartmentKorea Ocean Research and Development InstituteAnsanKorea
  6. 6.Department of Advanced Technology FusionKonkuk UniversitySeoulKorea
  7. 7.Department of Computer Science and EngineeringHanyang UniversitySeoulKorea
  8. 8.Global Environment Research CenterNational Institute of Environmental ResearchIncheonKorea
  9. 9.Korea Environment InstituteSeoulKorea

Personalised recommendations