Asia-Pacific Journal of Atmospheric Sciences

, Volume 47, Issue 2, pp 151–165 | Cite as

Evaluation of the vegetated urban canopy model (VUCM) and its impacts on urban boundary layer simulation

  • Sang-Hyun Lee
  • Jong-Jin Baik


The vegetated urban canopy model (VUCM) is implemented in a meteorological model, the Regional Atmospheric Modeling System (RAMS), for urban atmospheric modeling. The VUCM includes various urban physical processes such as in-canyon radiative transfer, turbulent energy exchanges, substrate heat conduction, and in-canyon momentum drag. The coupled model RAMS/VUCM is evaluated and then used to examine its impacts on the dynamic and thermodynamic structure of the urban boundary layer (UBL) in the Seoul metropolitan area. The spatial pattern of the nocturnal urban heat island (UHI) in Seoul is quite well simulated by the RAMS/VUCM. A statistical evaluation of 2-m air temperature reveals a significant improvement in model performance, especially in the nighttime. The RAMS/VUCM simulates the diurnal variations of surface energy balance fluxes realistically. This contributes to a reasonable UBL formation. A weakly unstable UBL is formed in the nighttime with UBL heights of about 100–200 m. When urban surfaces are represented in the RAMS using a land surface model of the Land Ecosystem-Atmosphere Feedback (LEAF), the RAMS/LEAF produces strong cold biases and thus fails to simulate UHI formation. This is due to the poor representation or absence of important urban physical processes in the RAMS/LEAF. This study implies that urban physical processes should be included in numerical models in order to reasonably simulate meteorology and air quality in urban areas and that the VUCM is one of the promising urban canopy models.

Key words

Vegetated urban canopy model urban boundary layer urban heat island surface energy balance urban atmospheric modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83, 521–536.CrossRefGoogle Scholar
  2. Asaeda, T., V. T. Ca, and A. Wake, 1996: Heat storage of pavement and its effect on the lower atmosphere. Atmos. Environ., 30, 413–427.CrossRefGoogle Scholar
  3. Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117, 2113–2136.CrossRefGoogle Scholar
  4. Best, M. J., C. S. B. Grimmond, and M. G. Villani, 2006: Evaluation of the urban tile in MOSES using surface energy balance observations. Bound.-Layer Meteor., 118, 503–525.CrossRefGoogle Scholar
  5. Chen, C., and W. R. Cotton, 1983: A one-dimensional simulation of the stratocumulus-capped mixed layer. Bound.-Layer Meteor., 25, 289–321.CrossRefGoogle Scholar
  6. Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405–418.Google Scholar
  7. Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83(C4), 1889–1903.CrossRefGoogle Scholar
  8. Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11, 2823–2836.CrossRefGoogle Scholar
  9. Dupont, E., L. Menut, B. Carissimo, J. Pelon, and P. Flamant, 1999: Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos. Environ., 33, 979–994.CrossRefGoogle Scholar
  10. Feigenwinter, C., R. Vogt, and E. Parlow, 1999: Vertical structure of selected turbulence characteristics above an urban canopy. Theor. Appl. Climatol., 62, 51–63.CrossRefGoogle Scholar
  11. Garratt, J. R., 1992: The atmospheric boundary layer. Cambridge University Press., 316 pp.Google Scholar
  12. Grimmond, C. S. B., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 83–88.CrossRefGoogle Scholar
  13. ____, and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteor., 41, 792–810.CrossRefGoogle Scholar
  14. Helfand, H. M., and J. C. Labraga, 1988: Design of a nonsingular level 2.5 second-order closure model for the prediction of atmospheric turbulence. J. Atmos. Sci., 45, 113–132.CrossRefGoogle Scholar
  15. Holt, T., and J. Pullen, 2007: Urban canopy modeling of the New York city metropolitan area: A comparison and validation of single- and multilayer parameterization. Mon. Wea. Rev., 135, 1906–1930.CrossRefGoogle Scholar
  16. Jiang, H., and W. R. Cotton, 2000: Large eddy simulation of shallow cumulus convection during BOMEX: Sensitivity to microphysics and radiation. J. Atmos. Sci., 57, 582–594.CrossRefGoogle Scholar
  17. Kastner-Klein, P., E. Fedorovich, and M. W. Rotach, 2001: A wind tunnel study of organised and turbulent air motions in urban street canyons. J. Wind Eng. Ind. Aerodyn., 89, 849–861.CrossRefGoogle Scholar
  18. Kim, Y.-H., and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor., 41, 651–659.CrossRefGoogle Scholar
  19. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358.CrossRefGoogle Scholar
  20. Lee, H. W., H.-J. Choi, S.-H. Lee, Y.-K. Kim, and W.-S. Jung, 2008: The impact of topography and urban building parameterization on the photochemical ozone concentration of Seoul, Korea. Atmos. Environ., 42, 4232–4246.CrossRefGoogle Scholar
  21. Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteor., 126, 73–102.CrossRefGoogle Scholar
  22. _____, and J.-J. Baik, 2010: Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol., 100, 227–237.CrossRefGoogle Scholar
  23. _____, C.-K. Song, J.-J. Baik, and S.-U. Park, 2009: Estimation of anthropogenic heat emission in the Gyeong-In region of Korea. Theor. Appl. Climatol., 96, 291–303.CrossRefGoogle Scholar
  24. Lee, T. J., and R. A. Pielke, 1992: Estimating the soil surface specific humidity. J. Appl. Meteor., 31, 480–484.CrossRefGoogle Scholar
  25. Lemonsu, A., C. S. B. Grimmond, and V. Masson, 2004: Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. J. Appl. Meteor., 43, 312–327.CrossRefGoogle Scholar
  26. Lyons, W. A., R. A. Pielke, C. J. Tremback, R. L. Walko, D. A. Moon, and C. S. Keen, 1995: Modeling impacts of mesoscale vertical motions upon coastal zone air pollution dispersion. Atmos. Environ., 29, 283–301.CrossRefGoogle Scholar
  27. Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261–304.CrossRefGoogle Scholar
  28. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357–397.CrossRefGoogle Scholar
  29. McQueen, J. T., R. A. Valigura, and B. J. B. Stunder, 1997: Evaluation of the RAMS model for estimating turbulent fluxes over the Chesapeake Bay. Atmos. Environ., 31, 3803–3819.CrossRefGoogle Scholar
  30. Mestayer, P. G., and Coauthors, 2005: The urban boundary-layer field campaign in Marseille (UBL/CLU-ESCOMPTE): Set-up and first results. Bound.-Layer Meteor., 114, 315–365.CrossRefGoogle Scholar
  31. Nunez, M., and T. R. Oke, 1976: Long-wave radiative flux divergence and nocturnal cooling of the urban atmosphere. Bound.-Layer Meteor., 10, 121–135.CrossRefGoogle Scholar
  32. Oke, T. R., R. A. Spronken-Smith, E. Jauregui, and C. S. B. Grimmond, 1999: The energy balance of central Mexico City during the dry season. Atmos. Environ., 33, 3919–3933.CrossRefGoogle Scholar
  33. Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 1038–1060.CrossRefGoogle Scholar
  34. Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system-RAMS. Meteor. Atmos. Phys., 49, 69–91.CrossRefGoogle Scholar
  35. Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676–705.CrossRefGoogle Scholar
  36. Tremback, C. J., 1990: Numerical simulation of a mesoscale convective complex: Model development and numerical results. Ph.D. dissertation, Colorado State University, 247 pp.Google Scholar
  37. United Nations, 2004: World urbanization prospects: The 2003 revision. United Nations Department of Economic and Social Affairs, 34 pp. [Available online at]
  38. Walko, R. L., and Coauthors, 2000: Coupled atmosphere-biophysicshydrology models for environmental modeling. J. Appl. Meteor., 39, 931–944.CrossRefGoogle Scholar
  39. Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184–194.Google Scholar
  40. Zhong, S., and J. Fast, 2003: An evaluation of the MM5, RAMS and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake valley. Mon. Wea. Rev., 131, 1301–1322.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Netherlands 2011

Authors and Affiliations

  1. 1.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
  2. 2.Chemical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA

Personalised recommendations