Translational Behavioral Medicine

, Volume 4, Issue 3, pp 275–289 | Cite as

A control systems engineering approach for adaptive behavioral interventions: illustration with a fibromyalgia intervention

  • Sunil Deshpande
  • Daniel E. Rivera
  • Jarred W. Younger
  • Naresh N. Nandola
Original Research

Abstract

The term adaptive intervention has been used in behavioral medicine to describe operationalized and individually tailored strategies for prevention and treatment of chronic, relapsing disorders. Control systems engineering offers an attractive means for designing and implementing adaptive behavioral interventions that feature intensive measurement and frequent decision-making over time. This is illustrated in this paper for the case of a low-dose naltrexone treatment intervention for fibromyalgia. System identification methods from engineering are used to estimate dynamical models from daily diary reports completed by participants. These dynamical models then form part of a model predictive control algorithm which systematically decides on treatment dosages based on measurements obtained under real-life conditions involving noise, disturbances, and uncertainty. The effectiveness and implications of this approach for behavioral interventions (in general) and pain treatment (in particular) are demonstrated using informative simulations.

Keywords

Adaptive behavioral interventions Pain treatment Fibromyalgia Dynamical systems System identification  Control systems engineering Model predictive control 

References

  1. 1.
    Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301-304.PubMedCrossRefGoogle Scholar
  2. 2.
    Wellstead P, Bullinger E, Kalamatianos D, Mason O, Verwoerd M. The role of control and system theory in systems biology. Annu Rev Control. 2008;32(1):33-47.CrossRefGoogle Scholar
  3. 3.
    Collins LM, Murphy SA, Bierman KL. A conceptual framework for adaptive preventive interventions. Prev Sci. 2004;5:185-196.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Åström K, Murray R. Feedback Systems: An Introduction for Scientists and Engineers. Princeton: Princeton University Press; 2009.Google Scholar
  5. 5.
    Chakraborty B, Murphy SA. Dynamic treatment regimes. Annu Rev Stat Appl. 2014;1(1):447-464.Google Scholar
  6. 6.
    Riley WT, Rivera DE, Atienza AA, Nilsen W, Allison SM, Mermelstein R. Health behavior models in the age of mobile interventions: are our theories up to the task? Transl Behav Med. 2011;1:53-71.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rivera DE. Optimized behavioral interventions: what does system identification and control engineering have to offer? In: Proceedings of 16th IFAC Symposium on System Identification; 2012: 882–893.Google Scholar
  8. 8.
    Rivera DE, Pew MD, Collins LM. Using engineering control principles to inform the design of adaptive interventions: a conceptual introduction. Drug Alcohol Depend. 2007;88(Supplement 2):S31-S40. Customizing Treatment to the Patient: Adaptive Treatment Strategies.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zafra-Cabeza A, Rivera DE, Collins LM, Ridao MA, Camacho EF. A risk-based model predictive control approach to adaptive interventions in behavioral health. IEEE Trans Control Syst Technol. 2011;19(4):891-901.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Boissevain MD, McCain GA. Toward an integrated understanding of fibromyalgia syndrome. I. Medical and pathophysiological aspects. Pain. 1991;45(3):227-238.PubMedCrossRefGoogle Scholar
  11. 11.
    Younger J, Mackey S. Fibromyalgia symptoms are reduced by low-dose naltrexone: a pilot study. Pain Med. 2009;10(4):663-672.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Younger J, Noor N, McCue R, Mackey S. Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. Arthritis Rheum. 2013;65(2):529-538.PubMedCrossRefGoogle Scholar
  13. 13.
    Ljung L. System Identification: Theory for the User. 2nd ed. Upper Saddle River: Prentice Hall; 1999.Google Scholar
  14. 14.
    Molenaar P, Campbell C. The new person-specific paradigm in psychology. Curr Dir Psychol Sci. 2009;18:112-117.CrossRefGoogle Scholar
  15. 15.
    Velicer W. Applying idiographic research methods: two examples. In: Proceedings of the 8th International Conference on Teaching Statistics; 2010.Google Scholar
  16. 16.
    Nandola NN, Rivera DE. An improved formulation of hybrid model predictive control with application to production-inventory systems. IEEE Trans Control Syst Technol. 2013;21(1):121-135.CrossRefGoogle Scholar
  17. 17.
    Pina AA, Holly LE, Zerr AA, Rivera DE. A personalized and control systems engineering conceptual approach to target childhood anxiety in the contexts of cultural diversity. J Clin Child Adolesc Psychol. 2014;43(3):442-453.PubMedCrossRefGoogle Scholar
  18. 18.
    Davison DE, Vanderwater R, Zhou K. A control-theory reward-based approach to behavior modification in the presence of social-norm pressure and conformity pressure. In: Proceedings of the 2012 American Control Conference; 2012: 4076–4052.Google Scholar
  19. 19.
    Hekler EB, Buman MP, Poothakandiyil N, et al. Exploring behavioral markers of long-term physical activity maintenance: a case study of system identification modeling within a behavioral intervention. Health Educ Behav. 2013;40(1 suppl):51S-62S.PubMedCrossRefGoogle Scholar
  20. 20.
    Navarro-Barrientos JE, Rivera DE, Collins LM. A dynamical model for describing behavioural interventions for weight loss and body composition change. Math Comput Model Dyn Syst. 2011;17(2):183-203.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Dong Y, Rivera DE, Thomas DM, Navarro-Barrientos JE, Downs DS, Savage JS, Collins LM. A dynamical systems model for improving gestational weight gain behavioral interventions. In: Proceedings of the 2012 American Control Conference; 2012: 4059–4064.Google Scholar
  22. 22.
    Dong Y, Rivera DE, Downs DS, Savage JS, Thomas DM, Collins LM. Hybrid model predictive control for optimizing gestational weight gain behavioral interventions. In: Proceedings of the 2013 American Control Conference; 2013: 1973–1978.Google Scholar
  23. 23.
    Savage JS, Downs DS, Dong Y, Rivera DE. Control systems engineering for optimizing a prenatal weight gain intervention to regulate infant birth weight. Am J Public Health. 2014;104(7):1247-1254.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Dong Y, Deshpande S, Rivera DE, Downs DS, Savage JS. Hybrid model predictive control for sequential decision policies in adaptive behavioral interventions. In: Proceedings of the 2014 American Control Conference; 2014: 4198–4203.Google Scholar
  25. 25.
    Timms KP, Rivera DE, Collins LM, Piper ME. A dynamical systems approach to understanding self-regulation in smoking cessation behavior change. Nicotine Tob Res. 2014;16(Suppl 2):S159-S168.PubMedCrossRefGoogle Scholar
  26. 26.
    Timms KP, Rivera DE, Collins LM, Piper ME. Continuous-time system identification of a smoking cessation intervention. Int J Control. 2014;87(7):1423-1437.CrossRefGoogle Scholar
  27. 27.
    Timms KP, Rivera DE, Piper ME, Collins LM. A hybrid model predictive control strategy for optimizing a smoking cessation intervention. In: Proceedings of the 2014 American Control Conference; 2014: 2389–2394.Google Scholar
  28. 28.
    Trail JB, Collins LM, Rivera DE, Li R, Piper ME, Baker TB. Functional data analysis for dynamical system identification of behavioral processes. Psychol Methods. 2014;19(2):175-187.PubMedCrossRefGoogle Scholar
  29. 29.
    Ogata K. Modern Control Engineering. Upper Saddle River: Prentice Hall; 2001.Google Scholar
  30. 30.
    Ogunnaike BA, Ray WH. Process Dynamics, Modeling, and Control. Oxford: Oxford University Press; 1994.Google Scholar
  31. 31.
    Wolfe F, Clauw D, Fitzcharles M, et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010;62:600-610.CrossRefGoogle Scholar
  32. 32.
    Wolfe F, Smythe HA, Yunus M, et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia: report of the multicenter criteria committee. Arthritis Rheum. 1990;33:160-172.PubMedCrossRefGoogle Scholar
  33. 33.
    Perrot S. Fibromyalgia syndrome: a relevant recent construction of an ancient condition? Curr Opin Support Palliat Care. 2008;2(2):122-127.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee YC, Nassikas NJ, Clauw DJ. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Res Ther. 2011;13(2):211.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Mattiloi TM, Milne B, Cahill C. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats. Mol Pain. 2010;6(22):1-11.Google Scholar
  36. 36.
    Deshpande S. A control engineering approach for designing an optimized treatment plan for fibromyalgia. Master’s thesis, Electrical Engineering, Arizona State University, USA; 2011.Google Scholar
  37. 37.
    Gevers M, Miskovic L, Bonvin D, Karimi A. Identification of multi-input systems: variance analysis and input design issues. Automatica. 2006;42(4):559-572.CrossRefGoogle Scholar
  38. 38.
    The Mathworks. System Identification Toolbox, MATLAB User Manual for version R2009b; 2009.Google Scholar
  39. 39.
    Garnier H, Young PC. The advantages of directly identifying continuous-time transfer function models in practical applications. Int J Control. 2014;87(7):1319-1338.CrossRefGoogle Scholar
  40. 40.
    Hekler EB, Klasnja P, Froehlich JE, Buman MP. Mind the theoretical gap: Interpreting, using, and developing behavioral theory in HCI research. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13; 2013: 3307–3316.Google Scholar
  41. 41.
    Martin CA, Rivera DE, Riley WT, Hekler EB, Buman MP, Adams MA, King AC. A dynamical systems model of social cognitive theory. In: Proceedings of the 2014 American Control Conference; 2014: 2407–2412.Google Scholar
  42. 42.
    Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design. Hoboken: Wiley; 1996.Google Scholar
  43. 43.
    Qin SJ, Badgwell TA. A survey of industrial model predictive control technology. Control Eng Pract. 2003;11(7):733-764.CrossRefGoogle Scholar
  44. 44.
    Deshpande S, Nandola NN, Rivera DE, Younger J. A control engineering approach for designing an optimized treatment plan for fibromyalgia. In: Proceedings of the 2011 American Control Conference; 2011: 4798–4803.Google Scholar
  45. 45.
    Lee H, Buckingham B, Wilson D, Bequette B. A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator. J Diabetes Sci Tech. 2009;3(5):1082-1090.CrossRefGoogle Scholar
  46. 46.
    Wang Y, Dassau E, Doyle F. Closed-loop control of artificial pancreatic β-cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE Trans Biomed Eng. 2010;57(2):211-219.PubMedCrossRefGoogle Scholar
  47. 47.
    Zurakowski R, Teel AR. A model predictive control based scheduling method for HIV therapy. J Theor Biol. 2006;238(2):368-382.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee JH, Yu ZH. Tuning of model predictive controllers for robust performance. Comput Chem Eng. 1994;18(1):15-37.CrossRefGoogle Scholar
  49. 49.
    Wang W, Rivera DE. Model predictive control for tactical decision-making in semiconductor manufacturing supply chain management. IEEE Trans Control Syst Technol. 2008;16(5):841-855.CrossRefGoogle Scholar
  50. 50.
    Deshpande S. Optimal input signal design for data-centric identification and control with applications to behavioral health and medicine. Ph.D. thesis, Electrical Engineering, Arizona State University, USA; 2014.Google Scholar
  51. 51.
    Nilsen W, Pavel M. Moving behavioral theories into the 21st century: technological advancements for improving quality of life. IEEE Pulse. 2013;4(5):25-28.PubMedCrossRefGoogle Scholar
  52. 52.
    Hersen M, Barlow DH. Single-Case Experimental Designs: Strategies for Studying Behavior Change. Oxford: Pergamon; 1976.Google Scholar
  53. 53.
    Lillie EO, Patay B, Diamant J, Issell B, Topol EJ, Schork NJ. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Personal Med. 2011;8(2):161-173.CrossRefGoogle Scholar
  54. 54.
    Dallery J, Cassidy RN, Raiff BR. Single-case experimental designs to evaluate novel technology-based health interventions. J Med Internet Res. 2013;15(2):1-17.CrossRefGoogle Scholar
  55. 55.
    Deshpande S, Rivera DE, Younger J. Towards patient-friendly input signal design for optimized pain treatment interventions. In: Proceedings of the 16th IFAC Symposium on System Identification; 2012: 1311–1316.Google Scholar

Copyright information

© Society of Behavioral Medicine 2014

Authors and Affiliations

  • Sunil Deshpande
    • 1
  • Daniel E. Rivera
    • 1
  • Jarred W. Younger
    • 2
  • Naresh N. Nandola
    • 1
    • 3
  1. 1.Control Systems Engineering Laboratory, School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeUSA
  2. 2.Neuroinflammation, Pain and Fatigue Laboratory, Department of PsychologyUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.ABB Corporate Research CenterBangaloreIndia

Personalised recommendations