Translational Behavioral Medicine

, Volume 1, Issue 1, pp 53–71 | Cite as

Health behavior models in the age of mobile interventions: are our theories up to the task?

  • William T Riley
  • Daniel E Rivera
  • Audie A Atienza
  • Wendy Nilsen
  • Susannah M Allison
  • Robin Mermelstein


Mobile technologies are being used to deliver health behavior interventions. The study aims to determine how health behavior theories are applied to mobile interventions. This is a review of the theoretical basis and interactivity of mobile health behavior interventions. Many of the mobile health behavior interventions reviewed were predominately one way (i.e., mostly data input or informational output), but some have leveraged mobile technologies to provide just-in-time, interactive, and adaptive interventions. Most smoking and weight loss studies reported a theoretical basis for the mobile intervention, but most of the adherence and disease management studies did not. Mobile health behavior intervention development could benefit from greater application of health behavior theories. Current theories, however, appear inadequate to inform mobile intervention development as these interventions become more interactive and adaptive. Dynamic feedback system theories of health behavior can be developed utilizing longitudinal data from mobile devices and control systems engineering models.


Mobile phones Handheld computers Health behavior interventions Smoking cessation Weight management Adherence Chronic disease management Health behavior theory Dynamical systems Control systems engineering 


  1. 1.
    Webb, T. L., Joseph, J., Yardley, L., & Michie, S. (2010). Using the Internet to promote health behavior change: A systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. Journal of Medical Internet Research, 12, e4.PubMedGoogle Scholar
  2. 2.
    Tate, D. F., Finkelstein, E. A., Khavjou, O., & Gustafson, A. (2009). Cost effectiveness of Internet interventions: Review and recommendations. Annals of Behavioral Medicine, 38, 40–45.PubMedGoogle Scholar
  3. 3.
    Norman, G. J., Zabinski, M. F., Adams, M. A., Rosenberg, D. E., Yaroch, A. L., & Atienza, A. A. (2007). A review of eHealth interventions for physical activity and dietary behavior change. American Journal of Preventive Medicine, 33, 336–345.PubMedGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Leena, K., Tomi, L., & Arja, R. (2005). Intensity of mobile phone use and health compromising behaviours: How is information and communication technology connected to health-related lifestyle in adolescence? Journal of Adolescence, 28, 35–47.PubMedGoogle Scholar
  8. 8.
    Kosaraju, A., Barrigan, C. R., Poropatich, R. K., & Casscells, S. W. (2010). Use of mobile phones as a tool for United States health diplomacy abroad. Telemed J E Health., 16, 218–222.PubMedGoogle Scholar
  9. 9.
    Kaplan, W. A. (2006). Can the ubiquitous power of mobile phones be used to improve health outcomes in developing countries? Global Healthcare, 2, 9–22.Google Scholar
  10. 10.
    Pharow, P., Blobel, B., Ruotsalainen, P., Petersen, F., & Hovsto, A. (2009). Portable devices, sensors and networks: Wireless personalized eHealth services. Studies in Health Technology and Informatics, 150, 1012–1016.PubMedGoogle Scholar
  11. 11.
    Patrick, K., Griswold, W. G., Raab, F., & Intille, S. S. (2008). Health and the mobile phone. American Journal of Preventive Medicine, 35, 177–181.PubMedGoogle Scholar
  12. 12.
    Becker, M. H. (Ed.) (1974). The health belief model and personal health behavior. Health Education Monographs, 2, 324–473.Google Scholar
  13. 13.
    Godin, G., & Kok, G. (1996). The theory of planned behavior: A review of its applications to health-related behaviors. American Journal of Health Promotion, 11, 87–98.PubMedGoogle Scholar
  14. 14.
    Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52, 1–26.PubMedGoogle Scholar
  15. 15.
    Prochaska, J. O., & Velicer, W. F. (1997). The transtheoretical model of health behavior change. American Journal of Health Promotion, 12, 38–48.PubMedGoogle Scholar
  16. 16.
    Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Amer Psychol., 55, 68–78.Google Scholar
  17. 17.
    Ogden, J. (2003). Some problems with social cognition models: A pragmatic and conceptual analysis. Health Psychology, 22, 424–428.PubMedGoogle Scholar
  18. 18.
    Burnett, K. F., Taylor, C. B., & Agras, W. S. (1985). Ambulatory computer-assisted therapy for obesity: A new frontier for behavior therapy. J Cons Clin Psychol., 53, 698–703.Google Scholar
  19. 19.
    Prue, D. M., Riley, A., Orlandi, M. A., & Jerome, A. (1990). Development of a computer-assisted smoking cessation program: A preliminary report. J Adv Med., 3, 131–139.Google Scholar
  20. 20.
    Brownell, K. D. (1995). Adherence to dietary regimens. 2: Components of effective interventions. Behavioral Medicine, 20, 155–164.PubMedGoogle Scholar
  21. 21.
    Fjeldsoe, B. S., Marshall, A. L., & Miller, Y. D. (2009). Behavior change interventions delivered by mobile telephone short-message service. American Journal of Preventive Medicine, 36, 165–173.PubMedGoogle Scholar
  22. 22.
    Krishna, S., & Boren, S. A. (2009). Healthcare via cell phone: A systematic review. Telemed e-Health., 15, 231–240.Google Scholar
  23. 23.
    Obermayer, J. L., Riley, W. T., Asif, O., & Jean-Mary, J. (2004). College smoking-cessation using cell phone text messaging. J Amer Coll Health, 53, 71–78.Google Scholar
  24. 24.
    Rodgers, A., Corbett, T., Bramley, D., et al. (2005). Do u smoke after txt? Results of a randomized trial of smoking cessation using mobile phone text messaging. Tobacco Control, 14, 255–261.PubMedGoogle Scholar
  25. 25.
    Riley, W. T., Obermayer, J., & Jean-Mary, J. (2008). Internet and mobile phone text messaging intervention for college smokers. J Amer Coll Health., 57, 245–248.Google Scholar
  26. 26.
    Whittaker, R., Maddison, R., McRobbie, H., et al. (2008). A multimedia mobile phone-based youth smoking cessation intervention: Findings from content development and piloting studies. Journal of Medical Internet Research, 10, e49.PubMedGoogle Scholar
  27. 27.
    Brendryen, H., & Kraft, P. (2008). Happy Ending: A randomized controlled trial of a digital multi-media smoking cessation intervention. Addiction, 103, 478–484.PubMedGoogle Scholar
  28. 28.
    Brendryen, H., Drozd, F., & Kraft, P. (2008). A digital smoking cessation program delivered through Internet and cell phone without nicotine replacement (happy ending): Randomized controlled trial. Journal of Medical Internet Research, 10, e51.PubMedGoogle Scholar
  29. 29.
    Free, C., Whittaker, R., Knight, R., Abramsky, T., Rodgers, A., & Roberts, G. (2009). Txt2stop: A pilot randomized controlled trial of mobile phone-based smoking cessation support. Tobacco Control, 18, 88–91.PubMedGoogle Scholar
  30. 30.
    Intille SS, Kukla C, Farzanfar R, Bakr W. Just-in-time technology to encourage incremental, dietary behavior change. In AMIA 2003 symposium proceedings, p 874Google Scholar
  31. 31.
    Brendryen, H., Kraft, P., & Schaalma, H. (2010). Looking inside the black box: Using intervention mapping to describe the development of an automated smoking cessation intervention happy ending. The Journal of Smoking Cessation, 5, 29–56.Google Scholar
  32. 32.
    Whittaker, R., Borland, R., Bullen, C., Lin, R. B., McRobbie, H., & Rodgers, A. (2009). Mobile phone-based interventions for smoking cessation. Cochrane Database of Systematic Reviews, 4, CD006611.Google Scholar
  33. 33.
    Joo, N., & Kim, B. (2007). Mobile phone short message service messaging for behaviour modification in a community-based weight loss programme in Korea. Journal of Telemedicine and Telecare, 13, 416–420.PubMedGoogle Scholar
  34. 34.
    Burke, L. E., Conroy, M. B., Sereika, S. M., et al. (2011). The effect of electronic self-monitoring on weight loss and dietary intake: A randomized behavioral weight loss trial. Obesity, 19, 338–344.Google Scholar
  35. 35.
    Liu, W. T., Wang, C. H., Lin, H. C., et al. (2008). Efficacy of a cell phone-based exercise programme for COPD. The European Respiratory Journal, 32, 651–659.PubMedGoogle Scholar
  36. 36.
    Nguyen, H. Q., Gill, D. P., Wolpin, S., Steele, B. G., & Benditt, J. O. (2009). Pilot study of a cell phone-based exercise persistence intervention post-rehabilitation for COPD. Int J COPD., 4, 301–313.Google Scholar
  37. 37.
    Bauer, S., de Niet, J., Timman, R., & Kordy, H. (2010). Enhancement of care through self-monitoring and tailored feedback via text messaging and their use in the treatment of childhood overweight. Patient Education and Counseling, 79, 315–319.PubMedGoogle Scholar
  38. 38.
    Hurling, R., Catt, M., De Boni, M., et al. (2007). Using Internet and mobile phone technology to deliver an automated physical activity program: Randomized controlled trial. Journal of Medical Internet Research, 9, e7.PubMedGoogle Scholar
  39. 39.
    Beasley, J. M., Riley, W. T., Davis, A., & Singh, J. (2008). Evaluation of a PDA-based dietary assessment and intervention program: A randomized controlled trial. Journal of the American College of Nutrition, 27, 280–286.PubMedGoogle Scholar
  40. 40.
    Haapala, I., Barengo, N. C., Biggs, S., Surakka, L., & Manninen, P. (2009). Weight loss by mobile phone: A 1-year effectiveness study. Public Health Nutrition, 12, 2382–2391.PubMedGoogle Scholar
  41. 41.
    Atienza, A. A., King, A. C., Oliveira, B. M., Ahn, D. K., & Gardner, C. D. (2008). Using hand-held computer technologies to improve dietary intake. American Journal of Preventive Medicine, 34, 514–518.PubMedGoogle Scholar
  42. 42.
    King, A. C., Ahn, D. K., Oliveira, B. M., Atienza, A. A., Castro, C. M., & Gardner, C. D. (2008). Promoting physical activity through hand-held computer technology. American Journal of Preventive Medicine, 34, 138–142.PubMedGoogle Scholar
  43. 43.
    Patrick, K., Raab, F., Adams, M. A., et al. (2009). A text message-based intervention for weight loss: Randomized controlled trial. Journal of Medical Internet Research, 11, e1.PubMedGoogle Scholar
  44. 44.
    Fjeldsoe, B. S., Miller, Y. D., & Marshall, A. L. (2010). MobileMums: A randomized controlled trial of an SMS-based physical activity intervention. Annals of Behavioral Medicine, 39, 101–111.PubMedGoogle Scholar
  45. 45.
    Hiltz, S. R. (1988). Productivity enhancement from computer-mediated communication: A systems contingency approach. Communications of the ACM, 31, 1438–1454.Google Scholar
  46. 46.
    Krishna, S., & Boren, S. A. (2008). Diabetes self-management care via cell phone: A systematic review. J Diabetes Sci Technol, 2, 509–517.PubMedGoogle Scholar
  47. 47.
    Ngo, J., Engelen, A., Molag, M., Roesle, J., Garcia-Segovia, P., & Serra-Majem, L. (2009). A review of the use of information and communication technologies for dietary assessment. British J Nutr., 101, S102–S112.Google Scholar
  48. 48.
    Boushey, C. J., Kerr, D. A., Wright, J., Lutes, K. D., Ebert, D. S., & Delp, E. J. (2009). Use of technology in children’s dietary assessment. Euro J Clin Nutr., 63, S50–S57.Google Scholar
  49. 49.
    Six, B. L., Schap, T. E., Zhu, F. M., Mariappan, A., Bosch, M., Delp, E. J., et al. (2010). Evidence-based development of a mobile telephone food record. Journal of the American Dietetic Association, 110, 74–79.PubMedGoogle Scholar
  50. 50.
    Hynes, M., Wang, H., & Kilmartin, L. (2009). Off-the-shelf mobile handset environments for deploying accelerometer based gait and activity analysis algorithms. Conf Proc IEEE Eng Med Biol Soc., 2009, 5187–5190.PubMedGoogle Scholar
  51. 51.
    Bexelius, C., Lof, M., Sandin, S., Trolle Lagerros, Y., Forsum, E., & Litton, J. E. (2010). Measure of physical activity using cell phones: Validation using criterion measures. J Med Internet Res, 29, e2.Google Scholar
  52. 52.
    Farmer, K. C. (1999). Methods for measuring and monitoring medication regimen adherence in clinical trials and clinical practice. Clinical Therapeutics, 21, 1074–1090.PubMedGoogle Scholar
  53. 53.
    Naditz, A. (2008). Medication compliance—helping patients through technology: Modern “smart” pillboxes keep memory-short patients on their medical regimen. Telemed J E Health., 14, 875–880.PubMedGoogle Scholar
  54. 54.
    Safren, S. A., Hendriksen, E. S., Desousa, N., Boswell, S. L., & Mayer, K. H. (2003). Use of an on-line pager system to increase adherence to antiretroviral medications. AIDS Care, 15, 787–793.PubMedGoogle Scholar
  55. 55.
    Simoni, J. M., Huh, D., Frick, P. A., et al. (2009). Peer support and pager messaging to promote antiretroviral modifying therapy in Seattle: A randomized controlled trial. Journal of Acquired Immune Deficiency Syndromes, 52, 465–473.PubMedGoogle Scholar
  56. 56.
    Koshy, E., Car, J., & Majeed, A. (2008). Effectiveness of mobile-phone short messaging service (SMS) reminders for ophthalmology outpatient appointments: Observational study. BMC Ophthalmology, 8, 9.PubMedGoogle Scholar
  57. 57.
    Bos, A., Hoogstraten, J., & Prahl-Andersen, B. (2005). Failed appointments in an orthodontic clinic. BAm J Orthod Dentofacial Orthop, 127, 355–357.Google Scholar
  58. 58.
    Leong, K. C., Leong, K. W., Mastura, I., et al. (2006). The use of text messaging to improve attendance in primary care: A randomized controlled trial. Family Practice, 23, 699–705.PubMedGoogle Scholar
  59. 59.
    Chen, Z. W., Fang, L. Z., Chen, L. Y., & Dai, H. L. (2008). Comparison of an SMS text messaging and phone reminder to improve attendance at a health promotion center: A randomized controlled trial. Journal of Zhejiang University. Science B, 9, 34–38.PubMedGoogle Scholar
  60. 60.
    Blake, H. (2008). Mobile phone technology in chronic disease management. Nursing Standard, 23, 43–46.PubMedGoogle Scholar
  61. 61.
    Russel-Minda, E., Jutai, J., Speechly, M., Bradley, K., Chudyk, A., & Petrella, R. (2009). Health technologies for monitoring and managing diabetes: A systematic review. J Diabetes Sci Technol., 3, 1460–1471.Google Scholar
  62. 62.
    Skinner, C., & Finkelstein, J. (2008). Using cell phones for chronic disease prevention and management. AMIA Annual Symposium Proceedings, 6, 1137.Google Scholar
  63. 63.
    Franklin, V. L., Waller, A., Pagliari, C., & Greene, S. A. (2006). A randomized controlled trial of Sweet Talk, a text messaging system to support young people with diabetes. Diabetes Med., 23, 1332–1338.Google Scholar
  64. 64.
    American Diabetes Association. (2009). Executive summary: Standards of medical care in diabetes—2009. Diabetes Care, 32, S6–S12.Google Scholar
  65. 65.
    Hedtke, P. A. (2008). Can wireless technology enable new diabetes management tools. J Diabetes Sci Technol., 2, 127–130.PubMedGoogle Scholar
  66. 66.
    Ma, Y., Olendzki, B. C., Chiriboga, D., et al. (2006). PDA-assisted low glycemic index dietary intervention for type 2 diabetes: A pilot study. Euro J Clin Nutr., 60, 1235–1243.Google Scholar
  67. 67.
    Forjuoh, S. N., Reis, M. D., Couchman, G. R., & Ory, M. G. (2008). Improving diabetes self-care with a PDA in ambulatory care. Telemed Health., 14, 273–279.Google Scholar
  68. 68.
    Lanzola, G., Capozzi, D., D’Annunzio, G., Ferrari, P., Bellazzi, R., & Larizza, C. (2007). Going mobile with a multi-access service for the management of diabetes patients. J Diabetes Sci Technol., 1, 730–737.PubMedGoogle Scholar
  69. 69.
    Arsand, E., Tufano, J. T., Ralston, J. D., & Hjortdahl, P. (2008). Designing mobile dietary management support technologies for people with diabetes. Journal of Telemedicine and Telecare, 14, 329–332.PubMedGoogle Scholar
  70. 70.
    Rami, B., Popow, C., Horn, W., Waldhoer, T., & Schober, E. (2006). Telemedical support to improve glycemic control in adolescents with type 1 diabetes mellitus. European Journal of Pediatrics, 165, 701–705.PubMedGoogle Scholar
  71. 71.
    Quinn, C. C., Clough, S. S., Minor, J. M., Lender, D., Okafor, M. C., & Gruber-Baldini, A. (2008). WellDocTM mobile diabetes management randomized controlled trial: Change in clinical and behavioral outcomes and patient and physician satisfaction. Diabetes Technology and Therapeutics, 10, 160–168.PubMedGoogle Scholar
  72. 72.
    Turner, J., Larsen, M., Tarassenko, L., Neil, A., & Farmer, A. (2009). Implementation of telehealth support for patients with type 2 diabetes using insulin treatment: An exploratory study. Inform Prim Care., 17, 47–53.PubMedGoogle Scholar
  73. 73.
    Cho, J. H., Lee, H. C., Lim, D. J., Kwon, H. S., & Yoon, K. H. (2009). Mobile communication using a mobile phone with a glucometer for glucose control in type 2 patients with diabetes: As effective as an Internet-based glucose monitoring system. Journal of Telemedicine and Telecare, 15, 77–82.PubMedGoogle Scholar
  74. 74.
    Logan, A. G., McIsaac, W. J., Tisler, A., et al. (2007). Mobile phone-based remote patient monitoring system for management of hypertension in diabetic patients. Amer J Hypertension., 20, 942–948.Google Scholar
  75. 75.
    Leu, M. G., Norris, T. E., Hummel, J., Isaac, M., & Brogan, M. W. (2005). A randomized controlled trial of an automated wireless messaging system for diabetes. Diabetes Technology and Therapeutics, 7, 710–718.PubMedGoogle Scholar
  76. 76.
    Hanauer, D. A., Wentzell, K., Laffel, N., & Laffel, L. M. (2009). Computerized automated reminder diabetes system (CARDS): Email and SMS cell phone text messaging reminders to support diabetes management. Diabetes Technology and Therapeutics, 11, 99–106.PubMedGoogle Scholar
  77. 77.
    Strandbygaard, U., Thomsen, S. F., & Backer, V. (2010). A daily SMS reminder increases adherence to asthma treatment: A three-month follow-up study. Respiratory Medicine, 104, 166–171.PubMedGoogle Scholar
  78. 78.
    Chung, P., Yu, T., & Scheinfeld, N. (2007). Using cellphones for teledermatology, a preliminary study. Dermatology Online Journal, 13, 2.PubMedGoogle Scholar
  79. 79.
    Tang, F. H., Law, M. Y., Lee, A. C., & Chan, L. W. (2004). A mobile phone integrated health care delivery system for medical images. Journal of Digital Imaging, 17, 217–225.PubMedGoogle Scholar
  80. 80.
    Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32.PubMedGoogle Scholar
  81. 81.
    National Institutes of Health. (2010). (reporter_searchresults.cfm?&new=1&icde=5933670&loc=2&CFID=17945345&CFTOKEN=13189329). Accessed 29 Oct 2010.
  82. 82.
    Skevofilakas, M., Mougiakakou, S. G., Zarkogianni, K., et al. (2007). A communication and information technology infrastructure for real-time monitoring and management of type 1 diabetes patients. Conf Proc IEEE Eng Med Biol Soc., 2007, 3685–3686.PubMedGoogle Scholar
  83. 83.
    Holtz, B., & Whitten, P. (2009). Managing asthma with mobile phones: A feasibility study. Telemed J E Health., 15, 907–909.PubMedGoogle Scholar
  84. 84.
    Ryan, D., Pinnock, H., Lee, A. J., et al. (2009). The CYMPLA trial. Mobile phone-based structured intervention to achieve asthma control in patients with uncontrolled persistent asthma: A pragmatic randomized controlled trial. Primary Care Respiratory Journal, 18, 343–345.PubMedGoogle Scholar
  85. 85.
    Rosenstock, I. M. (1974). Historical origins of the Health Belief Model. Health Education Monographs, 2, 328–335.Google Scholar
  86. 86.
    Dunton and Atienza. (2009). The need for time-intensive information in healthful eating and physical activity research: A timely topic. JADA, 109(1), 30–35.Google Scholar
  87. 87.
    Boorsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110, 202–219.Google Scholar
  88. 88.
    Neville, L. M., O'Hara, B., & Milat, A. J. (2009). Computer-tailored dietary behaviour change interventions: A systematic review. Health Education Research, 24, 699–720.PubMedGoogle Scholar
  89. 89.
    Lustria, M. L., Cortese, J., Noar, S. M., & Glueckauf, R. L. (2009). Computer-tailored health interventions delivered over the Web: Review and analysis of key components. Patient Education and Counseling, 74, 156–173.PubMedGoogle Scholar
  90. 90.
    Heron, K. E., & Smyth, J. M. (2010). Ecological momentary interventions: Incorporating mobile technology into psychosocial and health behaviour treatments. British Journal of Health Psychology, 15, 1–39.PubMedGoogle Scholar
  91. 91.
    Llewelyn, S., & Hardy, G. (2001). Process research in understanding and applying psychological therapies. The British Journal of Clinical Psychology, 40, 1–21.PubMedGoogle Scholar
  92. 92.
    Åström, K. J. & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers.
  93. 93.
    Rivera, D. E., Pew, M. D., & Collins, L. M. (2007). Using engineering control principles to inform the design of adaptive interventions: A conceptual introduction. Drug and Alcohol Dependence, 88(suppl. 2), S31–S40.PubMedGoogle Scholar
  94. 94.
    Navarro-Barrientos, J. E., Rivera, D. E., & Collins, L. M. (2010). A dynamical systems model for understanding behavioral interventions for weight loss. In S. K. Chai, J. J. Salerno, & P. L. Mabry (Eds.), 2010 international conference on social computing, behavioral modeling, and prediction (SBP 2010) (pp. 170–179). Heidelberg: Springer.Google Scholar
  95. 95.
    Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., & Friston, K. (2008). The dynamic brain: From spiking neurons to neural masses and cortical fields. PLoS Computational Biology, 4, e1000092.PubMedGoogle Scholar
  96. 96.
    Saper, C. B., Chou, T. C., & Scammell, T. E. (2001). The sleep switch: Hypothalamic control of sleep and wakefulness. Trends Neuroscience., 24, 726–731.Google Scholar
  97. 97.
    Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907–915.PubMedGoogle Scholar
  98. 98.
    Lewis, F. L., & Vamvoudakis, K. G. (2010). Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 41, 14–25.Google Scholar
  99. 99.
    Bequette, B. W. (2009). Glucose clamp algorithms and insulin time–action profiles. J Diabetes Sci Technol., 3, 1005–1013.PubMedGoogle Scholar
  100. 100.
    Nandola, N., Rivera, D. E. (2010). A robust model predictive control formulation for hybrid systems with application to adaptive behavioral interventions. In American Control Conference, Baltimore, MD, pp. 6286–6292.Google Scholar
  101. 101.
    Schwartz, J. D., & Rivera, D. E. (2010). A process control approach to tactical inventory management in production-inventory systems. Int J Production Economics, 125, 111–124.Google Scholar
  102. 102.
    Ogunnaike, B. A., & Ray, W. H. (1994). Process dynamics, modeling, and control. New York: Oxford University Press.Google Scholar
  103. 103.
    Ljung, L. (1999). System identification: Theory for the user. Prentice Hall information and system sciences series. New York: Prentice Hall.Google Scholar
  104. 104.
    Ramsay, J., & Silverman, B. (2005). Functional data analysis. New York: Springer.Google Scholar
  105. 105.
    Camacho, E. F., & Bordons, C. (2004). Model predictive control (2nd ed.). New York: Springer.Google Scholar
  106. 106.
    Collins, L. M., Murphy, S. A., & Bierman, K. L. (2004). A conceptual framework for adaptive preventive interventions. Prevention Science, 5, 185–196.PubMedGoogle Scholar
  107. 107.
    O’Grady, L., Witteman, H., Bender, J. L., Urowitz, S., Wiljer, D., & Jaded, A. R. (2009). Measuring the impact of a moving target: Towards a dynamic framework for evaluating collaborative adaptive interactive technologies. Journal of Medical Internet Research, 11, e20.PubMedGoogle Scholar
  108. 108.
    Resnicow, K., Strecher, V., Couper, M., et al. (2010). Methodologic and design issues in patient-centered e-health research. American Journal of Preventive Medicine, 38, 98–102.PubMedGoogle Scholar
  109. 109.
    Downer, S. R., Meara, J. G., & Da Costa, A. C. (2005). Use of SMS text messaging to improve outpatient adherence. MJA, 183, 366–368.PubMedGoogle Scholar
  110. 110.
    Downer, S. R., Meara, J. G., Da Costa, A. C., & Sethuraman, K. (2006). SMS text messaging improves outpatient attendance. Australian Health Review, 30, 389–396.PubMedGoogle Scholar
  111. 111.
    Foley, J., & O’Neill, M. (2009). Use of mobile short message service (SMS) as a reminder: The effect on patient attendance. European Archives of Paediatric Dentistry, 10, 15–18.PubMedGoogle Scholar
  112. 112.
    da Costa, T. M., Salomao, P. L., Martha, A. S., Pisa, I. T., & Sigulem, D. (2010). The impact of short message service text messages sent as appointment reminders to patients’ cell phones at outpatient clinics in Sao Paulo, Brazil. International Journal of Medical Informatics, 79, 65–70.PubMedGoogle Scholar
  113. 113.
    Kwon, H. S., Cho, J. H., Kim, H. S., et al. (2004). Development of web-based diabetic patient management system using short message service (SMS). Diabetes Research and Clinical Practice, 66S, S133–S137.Google Scholar
  114. 114.
    Ostojic, V., Cvoriscec, B., Ostojic, S. B., Reznikoff, D., Stipic-Markovic, A., & Tudjman, Z. (2005). Improving asthma control through telemedicine: A study of short-message service. Telemed J E Health., 11, 28–35.PubMedGoogle Scholar
  115. 115.
    Kim, H. S., Yoo, Y. S., & Shim, H. S. (2005). Effects of an Internet-based intervention on plasma glucose levels in patients with type 2 diabetes. Journal of Nursing Care Quality, 20, 335–340.PubMedGoogle Scholar
  116. 116.
    Kim, H. S., Kim, N. C., & Ahn, S. H. (2006). Impact of a nurse short message service intervention for patients with diabetes. Journal of Nursing Care Quality, 21, 266–271.PubMedGoogle Scholar
  117. 117.
    Kim, H. S., & Jeong, H. S. (2007). A nurse short message service by cellular phone in type-2 diabetic patients for six months. Journal of Clinical Nursing, 16, 1082–1087.PubMedGoogle Scholar
  118. 118.
    Benhamou, P. Y., Melki, V., Boizel, R., et al. (2007). One-year efficacy and safety of Web-based follow-up using cellular phone in type 1 diabetic patients under insulin pump therapy: The PumpNet study. Diabetes Metabol., 33, 220–226.Google Scholar
  119. 119.
    Yoon, K. H., & Kim, H. S. (2008). A short message service by cellular phone in type 2 diabetic patients for 12 months. Diabetes Research and Clinical Practice, 79, 256–261.PubMedGoogle Scholar
  120. 120.
    Newton, K. H., Wiltshire, E. J., & Elley, C. R. (2009). Pedometers and text messaging to increase physical activity: Randomized controlled trial of adolescents with type 1 diabetes. Diabetes Care, 32, 813–815.PubMedGoogle Scholar
  121. 121.
    Prabhakaran, L., Chee, W. Y., Chua, K. C., Abisheganaden, J., & Wong, W. M. (2010). The use of text messaging to improve asthma control: A pilot study using mobile phone short messaging service (SMS). Journal of Telemedicine and Telecare, 16, 286–290.PubMedGoogle Scholar

Copyright information

© Society of Behavioral Medicine 2011

Authors and Affiliations

  • William T Riley
    • 1
  • Daniel E Rivera
    • 2
  • Audie A Atienza
    • 3
  • Wendy Nilsen
    • 4
  • Susannah M Allison
    • 5
  • Robin Mermelstein
    • 6
  1. 1.National Heart, Lung, and Blood Institute, NIHBethesdaUSA
  2. 2.School for Engineering of Matter, Transport, and Energy, Ira A. Fulton School of EngineeringArizona State UniversityTempeUSA
  3. 3.National Institute of Health, National Cancer InstituteBethesdaUSA
  4. 4.Office of Behavioral and Social Science Research, NIHBethesdaUSA
  5. 5.National Institute of Mental Health, NIHBethesdaUSA
  6. 6.Department of Psychology and Public Health, Health Research and Policy CenterUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations