Advertisement

Nuclear Medicine and Molecular Imaging

, Volume 53, Issue 3, pp 189–198 | Cite as

Development of a Novel Imaging Agent for Determining Albumin Uptake in Solid Tumors

  • S. Daum
  • J. P. Magnusson
  • L. Pes
  • J. Garcia Fernandez
  • S. Chercheja
  • F. Medda
  • F. I. Nollmann
  • S. D. Koester
  • P. Perez Galan
  • A. Warnecke
  • K. Abu Ajaj
  • Felix KratzEmail author
Original Article

Abstract

Purpose

The purpose of this study was to investigate the albumin-binding compound 111In-C4-DTPA as an imaging agent for the detection of endogenous albumin accumulation in tumors.

Methods

111In-C4-DTPA was injected in healthy nude mice for pharmacokinetic and biodistribution studies (10 min, 1, 6, 24, and 48 h, n = 4) and subsequently in tumor-bearing mice for single-photon emission computed tomography/X-ray-computed tomography (SPECT/CT) imaging studies. Four different human tumor xenograft models (LXFL529, OVXF899, MAXFTN401, and CXF2081) were implanted subcutaneously unilaterally or bilaterally (n = 4–8). After intravenous administration of 111In-C4-DTPA, SPECT/CT images were collected over 72 h at 4–6 time points. Additionally, gamma counting was performed for the blood, plasma, lungs, heart, liver, spleen, kidneys, muscle, and tumors at 72 h post-injection.

Results

111In-C4-DTPA bound rapidly to circulating albumin upon injection, and the radiolabeled albumin conjugate thus formed was stable in murine and human serum. SPECT/CT images demonstrated a time-dependent uptake with a maximum of 2.7–3.8% ID/cm3 in the tumors at approximately 24 h post-injection and mean tumor/muscle ratios in the range of 3.2–6.2 between 24 and 72 h post-injection. The kidneys and bladder were the predominant elimination organs. Gamma counting at 72 h post-injection showed 1.3–2.5% ID/g in the tumors and mean tumor/muscle ratios in the range of 4.9–9.4.

Conclusion

111In-C4-DTPA bound rapidly to circulating albumin upon injection and showed time-dependent uptake in the tumors demonstrating a potential for clinical application as a companion imaging diagnostic for albumin-binding anticancer drugs.

Keywords

Albumin Drug carrier Imaging agent SPECT/CT imaging Tumor accumulation 111In 

Notes

Compliance with Ethical Standards

Conflict of Interest

Steffen Daum, Johannes Pall Magnusson, Lara Pes, Javier Garcia Fernandez, Serghei Chercheja, Federico Medda, Friederike Inga Nollmann, Stephan David Koester, Patricia Perez Galan, Anna Warnecke, Khalid Abu Ajaj, and Felix Kratz declare no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

The institutional review board of our institute approved this retrospective study, and the requirement to obtain informed consent was waived.

Supplementary material

13139_2019_587_MOESM1_ESM.docx (28.3 mb)
ESM 1 (DOCX 29015 kb)

References

  1. 1.
    Kratz F, Muller I, Ryppa C, Warnecke A. Prodrug strategies in anticancer chemotherapy. ChemMedChem. 2008;3:20–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132:171–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Matsumura Y, Maeda HA. New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.PubMedGoogle Scholar
  4. 4.
    Merlot A, Kalinowski D, Richardson D. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 2014;5:299.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kratz F, Mueller-Driver R, Hofmann I, Drevs J, Unger CA. Novel macromolecular prodrug concept exploiting endogenous serum albumin as a drug carrier for cancer chemotherapy. J Med Chem. 2000;43:1253–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Kratz F, Warnecke A, Scheuermann K, Stockmar C, Schwab J, Lazar P, et al. Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives: improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem. 2002;45:5523–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Mansour A, Drevs J, Esser N, Hamada F, Badary O, Unger C, et al. A new approach for the treatment of malignant melanoma: enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res. 2003;63:4062–6.PubMedGoogle Scholar
  8. 8.
    Kratz F. DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials. Expert Opin Investig Drugs. 2007;16:855–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 a resolution. Protein Eng. 1999;12:439–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Chawla S, Ganjoo K, Schuetze S, Papai Z, Tine BV, Choy E, et al. Phase III study of aldoxorubicin vs Investigators’ choice as treatment for relapsed/refractory soft tissue sarcomas. J Clin Oncol. 2017;35:11000.CrossRefGoogle Scholar
  11. 11.
    Chawla S, Papai Z, Mukhametshina G, Sankhala K, Vasylyev L, Fedenko A, et al. First-line aldoxorubicin vs doxorubicin in metastatic or locally advanced unresectable soft-tissue sarcoma: a phase 2b randomized clinical trial. JAMA Oncol 2015;1:1272–1280.Google Scholar
  12. 12.
    Bianchi P, Villa G, Buffoni F, Agnese G, Gipponi M, Costa R, et al. Different sites and modes of tracer injection for mapping the sentinel lymph node in patients with breast cancer. Tumori. 2000;86:307–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Maccauro M, Villano C, Aliberti G, Ferrari L, Castellani M, Patuzzo R, et al. Lymphoscintigraphy with intraoperative gamma probe sentinel node detection: clinical impact in patients with head and neck melanomas. Q J Nucl Med Mol Imaging. 2005;49:245–51.PubMedGoogle Scholar
  14. 14.
    Volkert W, Hoffman T. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.CrossRefPubMedGoogle Scholar
  15. 15.
    Wangler C, Buchmann I, Eisenhut M, Haberkorn U, Mier W. Radiolabeled peptides and proteins in cancer therapy. Protein Pept Lett. 2007;14:273–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Sugiura G, Kuhn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules. 2014;19:2135–65.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schmitt-Willich H, Brehm M, CL Ewers CL, Michl G, Muller-Fahrnow A, Petrov O, et al. Synthesis and physicochemical characterization of a new gadolinium chelate: the liver-specific magnetic resonance imaging contrast agent Gd-EOB-DTPA. Inorg Chem. 1999;38:1134–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006;45:1198–215.CrossRefPubMedGoogle Scholar
  19. 19.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.CrossRefGoogle Scholar
  20. 20.
    Babson A, Winnick T. Protein transfer in tumor-bearing rats. Cancer Res. 1954;14:606–11.PubMedGoogle Scholar
  21. 21.
    Kratz F, Beyer U. Serum proteins as drug carriers of anticancer agents: a review. Drug Deliv. 1998;5:281–99.CrossRefPubMedGoogle Scholar
  22. 22.
    Sinn H, Schrenk H, Friedrich E, Schilling U, Maier-Borst W. Design of compounds having an enhanced tumour uptake, using serum albumin as a carrier. Part I. Int J Rad Appl Instrum B. 1990;17:819–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Schilling U, Friedrich E, Sinn H, Schrenk H, Clorius J, Maier-Borst W. Design of compounds having enhanced tumour uptake, using serum albumin as a carrier-part II. In vivo studies. Int J Rad Appl Instrum B. 1992;19:685–95.CrossRefPubMedGoogle Scholar
  24. 24.
    Wunder A, Stehle G, Sinn H, Schrenk H, Hoffbiederbeck D, Bader F, et al. Enhanced albumin uptake by rat tumors. Int J Oncol. 1997;11:497–507.PubMedGoogle Scholar
  25. 25.
    Haubner R, Schmid A, Maurer A, Rangger C, Roig L, Pichler B, et al. [(68)Ga]NOTA-galactosyl human serum albumin: a tracer for liver function imaging with improved stability. Mol Imaging Biol. 2017;19:723–30.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Korean Society of Nuclear Medicine 2019

Authors and Affiliations

  • S. Daum
    • 1
  • J. P. Magnusson
    • 1
  • L. Pes
    • 1
  • J. Garcia Fernandez
    • 1
  • S. Chercheja
    • 1
  • F. Medda
    • 1
  • F. I. Nollmann
    • 1
  • S. D. Koester
    • 1
  • P. Perez Galan
    • 1
  • A. Warnecke
    • 1
  • K. Abu Ajaj
    • 1
  • Felix Kratz
    • 1
    Email author
  1. 1.Centurion Biopharma Corporation/CytRx Drug Discovery BranchFreiburgGermany

Personalised recommendations