Nuclear Medicine and Molecular Imaging

, Volume 52, Issue 1, pp 24–30 | Cite as

Development of tau PET Imaging Ligands and their Utility in Preclinical and Clinical Studies

  • Yoori Choi
  • Seunggyun Ha
  • Yun-Sang Lee
  • Yun Kyung Kim
  • Dong Soo LeeEmail author
  • Dong Jin KimEmail author


The pathological features of Alzheimer’s disease are senile plaques which are aggregates of β-amyloid peptides and neurofibrillary tangles in the brain. Neurofibrillary tangles are aggregates of hyperphosphorylated tau proteins, and these induce various other neurodegenerative diseases, such as progressive supranuclear palsy, corticobasal degeneration, frontotemporal lobar degeneration, frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and chronic traumatic encephalopathy. In the case of Alzheimer’s disease, the measurement of neurofibrillary tangles associated with cognitive decline is suitable for differential diagnosis, disease progression assessment, and to monitor the effects of therapeutic treatment. This review discusses considerations for the development of tau ligands for imaging and summarizes the results of the first-in-human and preclinical studies of the tau tracers that have been developed thus far. The development of tau ligands for imaging studies will be helpful for differential diagnosis and for the development of therapeutic treatments for tauopathies including Alzheimer’s disease.


Tau Alzheimer’s disease Tauopathy Pet Imaging ligands Radiopharmaceutical 


Compliance with Ethical Standards

Conflict of Interest

Authors Yoori Choi, Seunggyun Ha, Yun-Sang Lee, and Yun Kyung Kim declare that they have no conflict of interest. Author Dong Soo Lee has received research grants from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C0466), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C3344), and funded by the Ministry of Health & Welfare, Republic of Korea (HI14C1277). Author Dong Jin Kim has received a research grant supported by the Brain Research Program through the National Research Foundation of Korea (NRF-2016M3C7A1913845).

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

For this type of study formal consent is not required.


  1. 1.
    Wang Y, Mandelkow E. tau In physiology and pathology. Nat rev Neurosci 2016;17:5–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Kolarova M, Garcia-Sierra F, Bartos A, Ricny J, Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers dis. 2012;2012:731526.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing res rev. 2013;12:289–309.CrossRefPubMedGoogle Scholar
  4. 4.
    Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Delacourte A. Biochemical and molecular characterization of neurofibrillary degeneration in frontotemporal dementias. Dement Geriatr Cogn Disord. 1999;10:75–9.CrossRefPubMedGoogle Scholar
  6. 6.
    McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68:709–35.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12:609–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Delacourte A. Tauopathies: recent insights into old diseases. Folia Neuropathol. 2005;43:244–57.PubMedGoogle Scholar
  9. 9.
    Dickson DW, Kouri N, Murray ME, Josephs KA. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci. 2011;45:384–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–22.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, et al. 2014 update of the Alzheimer’s disease neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2015;11:e1–120.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, et al. Impact of the Alzheimer’s disease neuroimaging Initiative, 2004 to 2014. Alzheimers Dement. 2015;11:865–84.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.CrossRefPubMedGoogle Scholar
  17. 17.
    Cselenyi Z, Jonhagen ME, Forsberg A, Halldin C, Julin P, Schou M, et al. Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med. 2012;53:415–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir F 18). J Nucl Med. 2010;51:913–20.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Barthel H, Gertz H-J, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35.CrossRefPubMedGoogle Scholar
  20. 20.
    Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.CrossRefPubMedGoogle Scholar
  21. 21.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42:631–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Guillozet AL, Weintraub S, Mash DC, Mesulam MM. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol. 2003;60:729–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12:292–323.CrossRefPubMedGoogle Scholar
  24. 24.
    Barghorn S, Mandelkow E. Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry. 2002;41:14885–96.CrossRefPubMedGoogle Scholar
  25. 25.
    Gamblin TC, King ME, Dawson H, Vitek MP, Kuret J, Berry RW, et al. In vitro polymerization of tau protein monitored by laser light scattering: method and application to the study of FTDP-17 mutants. Biochemistry. 2000;39:6136–44.CrossRefPubMedGoogle Scholar
  26. 26.
    King ME, Ahuja V, Binder LI, Kuret J. Ligand-dependent tau filament formation: implications for Alzheimer’s disease progression. Biochemistry. 1999;38:14851–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Fodero-Tavoletti MT, Okamura N, Furumoto S, Mulligan RS, Connor AR, McLean CA, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain. 2011;134:1089–100.CrossRefPubMedGoogle Scholar
  28. 28.
    Lim S, Haque MM, Su D, Kim D, Lee J-S, Chang Y-T, et al. Development of a BODIPY-based fluorescent probe for imaging pathological tau aggregates in live cells. Chem Commun. 2017;53:1607–10.CrossRefGoogle Scholar
  29. 29.
    Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54:1420–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Pike VW. PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30:431–40.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Van de Bittner GC, Ricq EL, Hooker JM. A philosophy for CNS radiotracer design. Acc Chem res. 2014;47:3127–34.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58:458–71.CrossRefPubMedGoogle Scholar
  33. 33.
    Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015;16:109–20.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rojo LE, Alzate-Morales J, Saavedra IN, Davies P, Maccioni RB. Selective interaction of lansoprazole and astemizole with tau polymers: potential new clinical use in diagnosis of Alzheimer’s disease. J Alzheimers Dis. 2010;19:573–89.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schafer KN, Kim S, Matzavinos A, Kuret J. Selectivity requirements for diagnostic imaging of neurofibrillary lesions in Alzheimer’s disease: a simulation study. NeuroImage. 2012;60:1724–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Agdeppa EDKV, Liu J, Flores-Torres S, Satyamurthy N, Petric A, Cole GM, et al. Binding characteristics of Radiofluorinated 6-Dialkylamino-2-Naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci. 2001;21:RC189.PubMedGoogle Scholar
  37. 37.
    Shin J, Lee SY, Kim SH, Kim YB, Cho SJ. Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. NeuroImage. 2008;43:236–44.CrossRefPubMedGoogle Scholar
  38. 38.
    Braskie MN, Klunder AD, Hayashi KM, Protas H, Kepe V, Miller KJ, et al. Plaque and tangle imaging and cognition in normal aging and Alzheimer’s disease. Neurobiol Aging. 2010;31:1669–78.CrossRefPubMedGoogle Scholar
  39. 39.
    Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J med. 2006;355:2652–63.CrossRefPubMedGoogle Scholar
  40. 40.
    Nelson LD, Siddarth P, Kepe V, Scheibel KE, Huang SC, Barrio JR, et al. Positron emission tomography of brain beta-amyloid and tau levels in adults with down syndrome. Arch Neurol. 2011;68:768–74.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Barrio JRSG, Wong KP, Huang SC, Liu J, Merrill DA, Giza CC, et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015;112:E2039–47.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kepe V, Bordelon Y, Boxer A, Huang SC, Liu J, Thiede FC, et al. PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J Alzheimers dis. 2013;36:145–53.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14.CrossRefPubMedGoogle Scholar
  44. 44.
    Fodero-Tavoletti MT, Furumoto S, Taylor L, McLean CA, Mulligan RS, Birchall I, et al. Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimers Res Ther. 2014;6:11.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol. 2015;14:114–24.CrossRefPubMedGoogle Scholar
  46. 46.
    Okamura N, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Harada R, Yates P, et al. Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain. 2014;137:1762–71.CrossRefPubMedGoogle Scholar
  47. 47.
    Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M, et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain. 2016;139:1539–50.CrossRefPubMedGoogle Scholar
  48. 48.
    Tago T, Furumoto S, Okamura N, Harada R, Adachi H, Ishikawa Y, et al. Preclinical evaluation of [(18)F]THK-5105 enantiomers: effects of chirality on its effectiveness as a tau imaging radiotracer. Mol Imaging Biol. 2016;18:258–66.CrossRefPubMedGoogle Scholar
  49. 49.
    Brendel M, Jaworska A, Probst F, Overhoff F, Korzhova V, Lindner S, et al. Small-animal PET imaging of tau pathology with 18F-THK5117 in 2 transgenic mouse models. J Nucl Med. 2016;57:792–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang W, Arteaga J, Cashion DK, Chen G, Gangadharmath U, Gomez LF, et al. A highly selective and specific PET tracer for imaging of tau pathologies. J Alzheimers Dis. 2012;31:601–12.PubMedGoogle Scholar
  51. 51.
    Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 2013;9:666–76.CrossRefPubMedGoogle Scholar
  52. 52.
    Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68.PubMedGoogle Scholar
  53. 53.
    Chien DT, Szardenings AK, Bahri S, Walsh JC, Mu F, Xia C, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimers Dis. 2014;38:171–84.PubMedGoogle Scholar
  54. 54.
    Wang L, Benzinger TL, Su Y, Christensen J, Friedrichsen K, Aldea P, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and Tauopathy. JAMA Neurol. 2016;73:1070–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol. 2016;80:247–58.CrossRefPubMedGoogle Scholar
  56. 56.
    Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89:971–82.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    WashingtonUniversity. F 18 T807 Tau PET imaging of Alzheimer’s disease. ClinicalTrialsgov Identifier: NCT02414347. 2015.Google Scholar
  58. 58.
    Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.CrossRefPubMedGoogle Scholar
  59. 59.
    Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139:1551–67.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lockhart SN, Baker SL, Okamura N, Furukawa K, Ishiki A, Furumoto S, et al. Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS One. 2016;11:e0158460.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Betthauser T, Lao PJ, Murali D, Barnhart TE, Furumoto S, Okamura N et al. In vivo comparison of tau radioligands 18F–THK-5351 and 18F–THK-5317. J Nucl Med. 2016.Google Scholar
  62. 62.
    Roche. Evaluation of [18F]RO6958948 as tracer for positron emission tomography (PET) imaging of Tau Burden in Alzheimer’s disease participants. ClinicalTrialsgov Identifier: NCT02792179. 2016.Google Scholar
  63. 63.
    Shao X, Carpenter GM, Desmond TJ, Sherman P, Quesada CA, Fawaz M, et al. Evaluation of [(11)C]N-methyl lansoprazole as a radiopharmaceutical for PET imaging of tau neurofibrillary tangles. ACS Med Chem Lett. 2012;3:936–41.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fawaz MV, Brooks AF, Rodnick ME, Carpenter GM, Shao X, Desmond TJ, et al. High affinity radiopharmaceuticals based upon lansoprazole for PET imaging of aggregated tau in Alzheimer’s disease and progressive supranuclear palsy: synthesis, preclinical evaluation, and lead selection. ACS Chem Neurosci. 2014;5:718–30.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem. 2016;59:4778–89.CrossRefPubMedGoogle Scholar
  66. 66.
    Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57:1599–606.CrossRefPubMedGoogle Scholar
  67. 67.
    Genentech. Longitudinal evaluation of [18F]MNI-798 as a PET radioligand for imaging Tau in the brain of patients with Alzheimer’s disease compared to healthy volunteers. ClinicalTrialsgov Identifier: NCT02640092. 2015.Google Scholar

Copyright information

© Korean Society of Nuclear Medicine 2017

Authors and Affiliations

  1. 1.Department of Nuclear MedicineCollege of Medicine, Seoul National UniversitySeoulSouth Korea
  2. 2.Department of Nuclear MedicineSeoul National University HospitalSeoulSouth Korea
  3. 3.Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of PharmacySeoul National UniversitySeoulSouth Korea
  4. 4.Institute of Brain ScienceKorean Institute of Science and TechnologySeoulSouth Korea

Personalised recommendations