Nuclear Medicine and Molecular Imaging

, Volume 50, Issue 4, pp 275–283 | Cite as

Stem Cell Monitoring with a Direct or Indirect Labeling Method

  • Min Hwan Kim
  • Yong Jin Lee
  • Joo Hyun Kang
Review Article


The molecular imaging techniques allow monitoring of the transplanted cells in the same individuals over time, from early localization to the survival, migration, and differentiation. Generally, there are two methods of stem cell labeling: direct and indirect labeling methods. The direct labeling method introduces a labeling agent into the cell, which is stably incorporated or attached to the cells prior to transplantation. Direct labeling of cells with radionuclides is a simple method with relatively fewer adverse events related to genetic responses. However, it can only allow short-term distribution of transplanted cells because of the decreasing imaging signal with radiodecay, according to the physical half-lives, or the signal becomes more diffuse with cell division and dispersion. The indirect labeling method is based on the expression of a reporter gene transduced into the cell before transplantation, which is then visualized upon the injection of an appropriate probe or substrate. In this review, various imaging strategies to monitor the survival and behavior change of transplanted stem cells are covered. Taking these new approaches together, the direct and indirect labeling methods may provide new insights on the roles of in vivo stem cell monitoring, from bench to bedside.


Stem cell tracking Radionuclide Direct labeling method Indirect labeling method 



This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (NRF-2012M2A2A7013480).

Compliance with Ethical Standards

Conflict of Interest

Min Hwan Kim, Yong Jin Lee, and Joo Hyun Kang declare that they have no conflict of interest, etc.

Ethical Statement

The care, maintenance, and treatment of animals in these studies followed protocols approved by the Institutional Animal Care and Use Committee of the Korea Institute of Radiological and Medical Sciences (KIRAMS).


  1. 1.
    Hsiao LC, Carr C, Chang KC, Lin SZ, Clarke K. Stem cell-based therapy for ischemic heart disease. Cell Transplant. 2013;22:663–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Jazi SM, Esfahani MH, Fesharaki M, Moulavi F, Gharipour M. Initial clinical outcomes of intracoronary infusion of autologous progenitor cells in patients with acute myocardial infarction. ARYA Atheroscler. 2012;7:162–7.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Welt FG, Losordo DW. Cell therapy for acute myocardial infarction: curb your enthusiasm? Circulation. 2006;113:1272–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Nbaheen M, Vishnubalaji R, Ali D, Bouslimi A, Al-Jassir F, Megges M, et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev. 2013;9:32–43.CrossRefPubMedGoogle Scholar
  5. 5.
    De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, et al. Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res. 2015;116:e40–50.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cao J, Li X, Chang N, Wang Y, Lei J, Zao D, et al. Dual-modular molecular imaging to trace transplanted bone mesenchymal stromal cells in an acute myocrdial infarction model. Cytotherapy. 2015. doi: 10.1016/j.jcyt.2015.05.003.Google Scholar
  11. 11.
    Mankoff DA, Pryma DA, Clark AS. Molecular imaging biomarkers for oncology clinical trials. J Nucl Med. 2014;55:525–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation. 2003;107:2134–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Andersson P, Forssell-Aronsson E, Johanson V, Wängberg B, Nilsson O, Fjälling M, et al. Internalization of indium-111 into human neuroendocrine tumor cells after incubation with indium-111-DTPA-D-Phe1-octreotide. J Nucl Med. 1996;37:2002–6.PubMedGoogle Scholar
  14. 14.
    Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A. 2002;99:3030–5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation. 2003;108:863–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Assis AC, Carvalho JL, Jacoby BA, Ferreira RL, Castanheira P, Diniz SO, et al. Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant. 2010;19:219–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Tamura M, Unno K, Yonezawa S, Hattori K, Nakashima E, Tsukada H, et al. In vivo trafficking of endothelial progenitor cells their possible involvement in the tumor neovascularization. Life Sci. 2004;75:575–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111:2198–202.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang SJ, Wu JC. Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Med. 2007;48:1916–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barroso MM. Quantum dots in cell biology. J Histochem Cytochem. 2011;59:237–51.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Choi HS, Frangioni JV. Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging. 2010;9:291–310.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med. 2010;16:561–73.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A. 2000;97:2785–90.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kang JH, Lee DS, Paeng JC, Lee JS, Kim YH, Lee YJ, et al. Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med. 2005;46:479–83.PubMedGoogle Scholar
  25. 25.
    Mesquita CT, Correa PL, Felix RC, Azevedo JC, Alves S, Oliveira CC, et al. Autologous bone marrow mononuclear cells labeled with Tc-99m hexamethylpropylene amine oxime scintigraphy after intracoronary stem cell therapy in acute myocardial infarction. J Nucl Cardiol. 2005;12:610–2.CrossRefPubMedGoogle Scholar
  26. 26.
    Acton PD, Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging. 2005;49:349–60.PubMedGoogle Scholar
  27. 27.
    Bonios M, Terrovitis J, Chang CY, Engles JM, Higuchi T, Lautamäki R, et al. Myocardial substrate and route of administration determine acute cardiac retention and lung bio-distribution of cardiosphere-derived cells. J Nucl Cardiol. 2011;18:443–50.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang Y, Dasilva JN, Hadizad T, Thorn S, Kuraitis D, Renaud JM, et al. (18)F-FDG cell labeling may underestimate transplanted cell homing: more accurate, efficient, and stable cell labeling with hexadecyl-4-[(18)F]fluorobenzoate for in vivo tracking of transplanted human progenitor cells by positron emission tomography. Cell Transplant. 2012;21:1821–35.CrossRefPubMedGoogle Scholar
  29. 29.
    Rodriguez-Porcel M, Gheysens O, Chen IY, Wu JC, Gambhir SS. Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther. 2005;12:1142–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, et al. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation. 2003;108:1302–5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration. Circ Res. 2002;91:1092–102.CrossRefPubMedGoogle Scholar
  32. 32.
    Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, et al. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res. 2005;11:7749–56.CrossRefPubMedGoogle Scholar
  33. 33.
    Müller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol. 2002;34:107–16.CrossRefPubMedGoogle Scholar
  34. 34.
    Higuchi T, Anton M, Saraste A, Dumler K, Pelisek J, Nekolla SG, et al. Reporter gene PET for monitoring survival of transplanted endothelial progenitor cells in the rat heart after pretreatment with VEGF and atorvastatin. J Nucl Med. 2009;50:1881–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Hodgetts SI, Beilharz MW, Scalzo AA, Grounds MD. Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or Nk1.1+ cells. Cell Transplant. 2000;9:489–502.PubMedGoogle Scholar
  36. 36.
    Qu Z, Balkir L, van Deutekom JC, Robbins PD, Pruchnic R, Huard J. Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol. 1998;142:1257–67.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Albrecht-Schgoer K, Schgoer W, Holfeld J, Theurl M, Wiedemann D, Steger C, et al. The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation. 2012;126:2491–501.CrossRefPubMedGoogle Scholar
  38. 38.
    Ma B, Hankenson KD, Dennis JE, Caplan AI, Goldstein SA, Kilbourn MR. A simple method for stem cell labeling with fluorine 18. Nucl Med Biol. 2005;32:701–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Welling MM, Duijvestein M, Signore A, van der Weerd L. In vivo biodistribution of stem cells using molecular nuclear medicine imaging. J Cell Physiol. 2011;226:1444–52.CrossRefPubMedGoogle Scholar
  40. 40.
    Chen IY, Wu JC. Cardiovascular molecular imaging: focus on clinical translation. Circulation. 2011;123:425–43.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Detante O, Moisan A, Dimastromatteo J, Richard MJ, Riou L, Grillon E, et al. Intravenous administration of 99mTc-HMPAO-labeled human mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell Transplant. 2009;18:1369–79.CrossRefPubMedGoogle Scholar
  42. 42.
    Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med. 2006;47:1295–301.PubMedGoogle Scholar
  43. 43.
    Roca M, de Vries EF, Jamar F, Israel O, Signore A. Guidelines for the labelling of leucocytes with 111In-oxine. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging. 2010;37:835–41.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kim MH, Woo SK, Lee KC, An GI, Pandya D, Park NW, et al. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-124I-iodobenzoate in rat myocardial infarction model. Biochem Biophys Res Commun. 2015;456:13–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm. 2009;24:379–93.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Huang X, Zhang F, Wang H, Niu G, Choi KY, Swierczewska M, et al. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials. 2013;34:1772–80.CrossRefPubMedGoogle Scholar
  47. 47.
    Zeng D, Desai AV, Ranganathan D, Wheeler TD, Kenis PJ, Reichert DE. Microfluidic radiolabeling of biomolecules with PET radiometals. Nucl Med Biol. 2013;40:42–51.CrossRefPubMedGoogle Scholar
  48. 48.
    Fontes A, Prata MI, Geraldes CF, André JP. Ga(III) chelates of amphiphilic DOTA-based ligands: synthetic route and in vitro and in vivo studies. Nucl Med Biol. 2011;38:363–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Park JJ, Lee TS, Son JJ, Chun KS, Song IH, Park YS, et al. Comparison of cell-labeling methods with 124I-FIAU and 64Cu-PTSM for cell tracking using chronic myelogenous leukemia cells expressing HSV1-tk and firefly luciferase. Cancer Biother Radiopharm. 2012;27:719–28.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kim MH, Woo SK, Kim KI, Lee TS, Kim CW, Kang JH, et al. Simple methods for tracking stem cells with 64Cu-labeled DOTA-hexadecyl-benzoate. ACS Med Chem Lett. 2015;6:528–30.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia. 2000;2:41–52.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A. 1999;96:2333–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Herschman HR. Noninvasive imaging of reporter gene expression in living subjects. Adv Cancer Res. 2004;92:29–80.CrossRefPubMedGoogle Scholar
  54. 54.
    Herschman HR. PET reporter genes for noninvasive imaging of gene therapy, cell tracking and transgenic analysis. Crit Rev Oncol Hematol. 2004;51:191–204.CrossRefPubMedGoogle Scholar
  55. 55.
    Inubushi M, Tamaki N. Radionuclide reporter gene imaging for cardiac gene therapy. Eur J Nucl Med Mol Imaging. 2007;34:S27–33.CrossRefPubMedGoogle Scholar
  56. 56.
    Kang JH, Chung JK. Molecular-genetic imaging based on reporter gene expression. J Nucl Med. 2008;49:164S–79.CrossRefPubMedGoogle Scholar
  57. 57.
    Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17:545–80.CrossRefPubMedGoogle Scholar
  58. 58.
    Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A. 2000;97:9226–33.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wu JC, Tseng JR, Gambhir SS. Molecular imaging of cardiovascular gene products. J Nucl Cardiol. 2004;11:491–505.CrossRefPubMedGoogle Scholar
  60. 60.
    Forss-Petter S, Danielson PE, Catsicas S, Battenberg E, Price J, Nerenberg M, et al. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron. 1990;5:187–97.CrossRefPubMedGoogle Scholar
  61. 61.
    Himes SR, Shannon MF. Assays for transcriptional activity based on the luciferase reporter gene. Methods Mol Biol. 2000;130:165–74.PubMedGoogle Scholar
  62. 62.
    Naciff JM, Behbehani MM, Misawa H, Dedman JR. Identification and transgenic analysis of a murine promoter that targets cholinergic neuron expression. J Neurochem. 1999;72:17–28.CrossRefPubMedGoogle Scholar
  63. 63.
    Rodriguez-Porcel M, Wu JC, Gambhir SS. Molecular imaging of stem cells. StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008–2009.Google Scholar
  64. 64.
    Genovese J, Cortes-Morichetti M, Chachques E, Frati G, Patel A, Chachques JC. Cell based approaches for myocardial regeneration and artificial myocardium. Curr Stem Cell Res Ther. 2007;2:121–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Shin JH, Chung JK, Kang JH, Lee YJ, Kim KI, Kim CW, et al. Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk. Eur J Nucl Med Mol Imaging. 2004;31:425–32.CrossRefPubMedGoogle Scholar
  66. 66.
    Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med. 2002;43:1188–200.PubMedGoogle Scholar
  67. 67.
    Terrovitis J, Kwok KF, Lautamäki R, Engles JM, Barth AS, Kizana E, et al. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol. 2008;52:1652–60.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lee AR, Woo SK, Kang SK, Lee SY, Lee MY, Park NW, et al. Adenovirus-mediated expression of human sodium-iodide symporter gene permits in vivo tracking of adipose tissue-derived stem cells in a canine myocardial infarction model. Nucl Med Biol. 2015;42:621–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Kim MH, Lee YJ, Kim KI, Lee TS, Woo KS, Lee DS, et al. In vitro monitoring of cardiomyogenic differentiation of mesenchymal stem cells using sodium iodide symporter gene. Tissue Eng Regen Med. 2012;9:304–10.CrossRefGoogle Scholar

Copyright information

© Korean Society of Nuclear Medicine 2015

Authors and Affiliations

  1. 1.Molecular Imaging Research CenterKorea Institute of Radiological and Medical Sciences (KIRAMS)SeoulRepublic of Korea

Personalised recommendations