Effects of Tables, Bar Charts, and Graphs on Solving Function Tasks

Originalarbeit/Original Article

Abstract

This paper presents an experiment that investigated the effect of forms of representation on students’ quantitative and qualitative reasoning on functions. The forms of representation we used were tables, augmented bar charts, and graphs. Research assumes that tables are more suitable for quantitative reasoning whereas graphs should be used for qualitative reasoning. The empirical results of the experiment indeed showed that tables and augmented bar charts were in general more suitable for quantitative reasoning than graphs. Concerning qualitative reasoning the results depended on how thoroughly the graph had to be inspected. If the task-relevant visual feature of the graph could be perceived with a glimpse, a graph was overall more suitable for qualitative reasoning than a table or an augmented bar chart. If the task-relevant visual feature could be identified solely after a thorough inspection of the graph’s shape, a table was generally more efficient for qualitative reasoning than an augmented bar chart or a graph.

Keywords

Concept of function Covariation Qualitative reasoning Quantitative reasoning Forms of representation Integrated model of text and picture comprehension 

Die Wirkung von Tabellen, Säulendiagrammen und Graphen auf das Lösen von Aufgaben zu funktionalen Zusammenhängen

Zusammenfassung

Der Artikel beschreibt ein Experiment, das die Auswirkung von Repräsentationsformen auf quantitative und qualitative Analysen von funktionalen Zusammenhängen durch Schülerinnen und Schülern untersucht. Als Repräsentationsformen wurden Tabellen, erweiterte Säulendiagramme und Graphen verwendet. Die Forschung nimmt an, dass Tabellen besser geeignet für quantitatives Denken sind, wohingegen für qualitatives Denken besser Graphen genutzt werden sollten. Die empirischen Ergebnisse des Experiments zeigten tatsächlich, dass Tabellen und erweiterte Säulendiagramme im Allgemeinen für quantitative Analysen besser geeignet waren als Graphen. Für qualitative Analysen hing das Ergebnis davon ab, wie gründlich der Graph zu inspizieren war. Wenn die aufgabenrelevante visuelle Eigenschaft des Graphen mit einem kurzen Blick wahrgenommen werden konnte, war ein Graph insgesamt besser geeignet für qualitative Analysen als eine Tabelle oder ein erweitertes Säulendiagramm. Wenn die aufgabenrelevante visuelle Eigenschaft nur nach einer gründlichen Analyse der Form des Graphen identifiziert werden konnte, war eine Tabelle im Allgemeinen effizienter für die qualitative Analyse als ein erweitertes Säulendiagramm oder ein Graph.

Schlüsselwörter

Funktionsbegriff Kovariation Qualitative Analysen Quantitative Analysen Repräsentationsformen Integriertes Modell des Text- und Bildverstehens 

Mathematics Education Subject Classification

C33 I23 

Notes

Funding

The project is funded by grants from Deutsche Forschungsgemeinschaft (DFG).

Supplementary material

13138_2017_124_MOESM1_ESM.pdf (297 kb)
Online material 1 Test items (German version)
13138_2017_124_MOESM2_ESM.pdf (148 kb)
Online material 2 Test items (English version)
13138_2017_124_MOESM3_ESM.pdf (117 kb)
Online material 3 Parameters of the three-dimensional Rasch model

References

  1. Adu-Gyamfi, K., & Bossé, M. J. (2014). Processes and reasoning in representations of linear functions. International Journal of Science and Mathematics Education, 12(1), 167–192.  https://doi.org/10.1007/s10763-013-9416-x.CrossRefGoogle Scholar
  2. Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. Journal of the Learning Sciences, 11(1), 25–61.  https://doi.org/10.1207/S15327809JLS1101_2.CrossRefGoogle Scholar
  3. Ayres, P., Kalyuga, S., & Sweller, J. (2011). Cognitive load theory. Explorations in the learning sciences, instructional systems and performance technologies. New York, NY: Springer.Google Scholar
  4. Baruk, S. (1985). L’âge du capitaine: De l’erreur en mathématiques. [The captain’s age: About mistakes in mathematics]. Paris, France: Editions du Seuil.Google Scholar
  5. Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12(3), 261–280.  https://doi.org/10.1177/014662168801200305.CrossRefGoogle Scholar
  6. Chalmers, P. (2012). Mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6). Retrieved from http://www.jstatsoft.org/v48/i06/Google Scholar
  7. Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2–3), 135–164.  https://doi.org/10.1007/BF01273661.Google Scholar
  8. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131.  https://doi.org/10.1007/s10649-006-0400-z.Google Scholar
  9. Eitel, A., Scheiter, K., & Schüler, A. (2012). The time course of information extraction from instructional diagrams. Perceptual and Motor Skills, 115(3), 677–701.  https://doi.org/10.2466/22.23.PMS.115.6.677-701.CrossRefGoogle Scholar
  10. Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37(6), 359–374.  https://doi.org/10.1016/0001-6918(73)90003-6.CrossRefGoogle Scholar
  11. Fischer, G. H. (1995). Linear logistic models for change. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch Models. Foundations, recent developments, and applications (pp. 157–180). New York, NY: Springer.Google Scholar
  12. Fischer, G. H. (1997). Unidimensional linear logistic Rasch models. In W. J. van der Linden (Ed.), Handbook of modern item response theory (pp. 225–243). New York, NY: Springer.  https://doi.org/10.1007/978-1-4757-2691-6.CrossRefGoogle Scholar
  13. Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378–382.  https://doi.org/10.1037/h0031619.CrossRefGoogle Scholar
  14. Fleiss, J. L. (1981). Statistical methods for rates and proportions (2nd edn.). New York, NY: Wiley.Google Scholar
  15. Follettie, J. F. (1980). Bar graph-using operations and response time. Los Alamitos, CA: Southwest Regional Laboratory for Educational Research and Development (ERIC No. ED250 381). https://files.eric.ed.gov/fulltext/ED250381.pdf
  16. Garner, M., Lemon, J., Fellows, I., & Singh, P. (2012). Irr: Various coefficients of interrater reliability and agreement: R package version 0.84. Retrieved from. https://CRAN.R-project.org/package=irrGoogle Scholar
  17. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.Google Scholar
  18. de Jong, T. (2010). Cognitive load theory, educational research, and instructional design: Some food for thought. Instructional Science, 38(2), 105–134.  https://doi.org/10.1007/s11251-009-9110-0.CrossRefGoogle Scholar
  19. Kiefer, T., Robitzsch, A., & Wu, M. (2016). TAM: Test analysis modules. R package version 1.13-0. Retrieved from. http://CRAN.R-project.org/package=TAMGoogle Scholar
  20. Kintsch, W. (1974). The representation of meaning in memory. Hillsdale, NJ: Erlbaum.Google Scholar
  21. Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge, U.K.: Cambridge University Press.Google Scholar
  22. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics Bulletin, 33(1), 159–174.  https://doi.org/10.2307/2529310.CrossRefGoogle Scholar
  23. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100.  https://doi.org/10.1111/j.1551-6708.1987.tb00863.x.CrossRefGoogle Scholar
  24. Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), Cambridge handbooks in psychology. The Cambridge handbook of multimedia learning (pp. 43–71). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  25. Müller-Lyer, F. C. (1889). Optische Urtheilstäuschungen [Optical illusions]. Archiv für Physiologie Suppl, 1889, 263–270.Google Scholar
  26. Nitsch, R., Fredebohm, A., Bruder, R., Kelava, A., Naccarella, D., Leuders, T., & Wirtz, M. (2015). Students’ competencies in working with functions in secondary mathematics education—Empirical examination of a competence structure model. International Journal of Science and Mathematics Education, 13(3), 657–682.  https://doi.org/10.1007/s10763-013-9496-7Google Scholar
  27. Paivio, A. (1990). Mental representations: A dual coding approach. New York, NY: Clarendon Press.CrossRefGoogle Scholar
  28. Peirce, C. S. (1906). Prolegomena to an apology for pragmatism. The Monist, 16(4), 492–546. Retrieved from. http://www.jstor.org/stable/27899680Google Scholar
  29. R Core Team (2016). R: A language and environment for statistical computing. R foundation for statistical computing. Retrieved from. http://www.R-project.org/Google Scholar
  30. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Expanded Edition, Chicago, University of Chicago Press 1980). Copenhagen, Denmark: Nielsen & Lydiche.Google Scholar
  31. Rost, J. (2004). Lehrbuch Testtheorie – Testkonstruktion [Textbook on the theory and construction of tests] (2nd edn.). Bern, Switzerland: Huber.Google Scholar
  32. Santa, J. L. (1977). Spatial transformations of words and pictures. Journal of Experimental Psychology: Human Learning & Memory, 3(4), 418–427.  https://doi.org/10.1037/0278-7393.3.4.418.Google Scholar
  33. Schnotz, W. (2014). Integrated model of text and picture comprehension. In R. E. Mayer (Ed.), Cambridge handbooks in psychology. The Cambridge handbook of multimedia learning (2nd edn., pp. 72–103). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  34. Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156.  https://doi.org/10.1016/S0959-4752(02)00017-8.CrossRefGoogle Scholar
  35. Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19(4), 469–508.  https://doi.org/10.1007/s10648-007-9053-4.CrossRefGoogle Scholar
  36. Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. In E. Dubinsky, A. H. Schoenfeld & J. J. Kaput (Eds.), Research in Collegiate Mathematics Education I (pp. 21–44). Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  37. Verschaffel, L., Greer, B., & Corte, E. d. (2000). Making sense of word problems. Lisse, The Netherlands: Swets & Zeitlinger.Google Scholar
  38. Vessey, I. (1991). Cognitive fit: A theory-based analysis of the graphs versus tables literature. Decision Sciences, 22(2), 219–240.  https://doi.org/10.1111/j.1540-5915.1991.tb00344.x.CrossRefGoogle Scholar
  39. Vollrath, H.-J. (1989). Funktionales Denken [Functional thinking]. Journal für Mathematik-Didaktik, 10(1), 3–37.  https://doi.org/10.1007/BF03338719.CrossRefGoogle Scholar
  40. Wainer, H. (1992). Understanding graphs and tables. Educational Researcher, 21(1), 14–23.  https://doi.org/10.3102/0013189X021001014.CrossRefGoogle Scholar
  41. Washburne, J. N. (1927). An experimental study of various graphic, tabular, and textual methods of presenting quantitative material. Journal of Educational Psychology, 18(6), 361–376.  https://doi.org/10.1037/h0074758.CrossRefGoogle Scholar
  42. Wills, T. W., Chang, B. L., Stepnowski, W., Cromley, J. G., Shipley, T., & Booth, J. L. (2014). Individual Differences in Eye Gazes: Coordination of Equations, Graphs, and Tables. Paper presented at the 2014 annual meeting of the American Educational Research Association. Retrieved from the AERA Online Paper Repository.Google Scholar

Copyright information

© GDM 2018

Authors and Affiliations

  1. 1.Institute for MathematicsUniversity of Koblenz-Landau, Campus LandauLandauGermany
  2. 2.General and Educational PsychologyUniversity of Koblenz-Landau, Campus LandauLandauGermany

Personalised recommendations