Advertisement

Correction to: Translation matrix elements for spherical Gauss–Laguerre basis functions

  • Jürgen Prestin
  • Christian WülkerEmail author
Correction
  • 286 Downloads

1 Correction to: GEM - International Journal on Geomathematics (2019) 10:6  https://doi.org/10.1007/s13137-019-0124-8

Unfortunately Formula 3.6 of the article has been misprinted in original publication and corrected here.
$$\begin{aligned} j_{l}(\beta r) \, Y_{lm}(\vartheta ,\varphi ) &= 4\pi \,\sum \nolimits _{|m'| \le l' \in {\mathbb {N}}_{0}} \sum \nolimits _{|m''| \le l'' \in {\mathbb {N}}_{0}} {\mathrm {i}}^{-l+l'+l''} j_{l'}(\beta r') \, \nonumber \\&\quad \times j_{l''}(\beta \nu ) \, Y_{l'm'}(\vartheta ',\varphi ) \, Y_{l''m''}(0,0)\nonumber \\&\quad \times (-1)^{m'+m''} \int _{0}^{\pi } \int _{0}^{2\pi } Y_{lm}(\theta ,\phi ) \, Y_{l', -m'} (\theta ,\phi )\nonumber \\&\quad \times Y_{l'',-m''}(\theta ,\phi ) \, {\mathrm {d}}\phi \, \sin \theta \, {\mathrm {d}}\theta . \end{aligned}$$
(3.6)
The original article has been corrected.

Notes

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of LübeckLübeckGermany
  2. 2.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations