Advertisement

A Hybrid High-Order method for passive transport in fractured porous media

  • Florent ChaveEmail author
  • Daniele A. Di Pietro
  • Luca Formaggia
Original Paper
  • 97 Downloads
Part of the following topical collections:
  1. Numerical methods for processes in fractured porous media

Abstract

In this work, we propose a model for the passive transport of a solute in a fractured porous medium, for which we develop a Hybrid High-Order (HHO) space discretization. We consider, for the sake of simplicity, the case where the flow problem is fully decoupled from the transport problem. The novel transmission conditions in our model mimic at the discrete level the property that the advection terms do not contribute to the energy balance. This choice enables us to handle the case where the concentration of the solute jumps across the fracture. The HHO discretization hinges on a mixed formulation in the bulk region and on a primal formulation inside the fracture for the flow problem, and on a primal formulation both in the bulk region and inside the fracture for the transport problem. Relevant features of the method include the treatment of nonconforming discretizations of the fracture, as well as the support of arbitrary approximation orders on fairly general meshes.

Keywords

Hybrid High-Order methods Finite volume methods Finite element methods Fractured porous media Darcy flow Miscible displacement Passive transport 

Mathematics Subject Classification

76S05 65N08 65N30 

Notes

References

  1. Aghili, J., Boyaval, S., Di Pietro, D.A.: Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134 (2015).  https://doi.org/10.1515/cmam-2015-0004 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Alboin, C., Jaffré, J., Roberts, J.E., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. In: American Mathematical Society Contemporary Mathematics (ed.) Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment, vol. 295, pp. 13–24. American Mathematical Society, Providence (2002).  https://doi.org/10.1090/conm/295/04999
  3. Anderson, D., Droniou, J.: An arbitrary-order scheme on generic meshes for miscible displacements in porous media. SIAM J. Sci. Comput. 40(4), B1020–B1054 (2018).  https://doi.org/10.1137/17M1138807 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Angot, P., Gallouët, T., Herbin, R.: Convergence of finite volume methods on general meshes for non smooth solution of elliptic problems with cracks. Finite Vol. Complex Appl. II, 215–222 (1999)MathSciNetzbMATHGoogle Scholar
  5. Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. ESAIM Math. Model. Numer. Anal. 43(2), 239–275 (2009).  https://doi.org/10.1051/m2an/2008052 MathSciNetCrossRefzbMATHGoogle Scholar
  6. Antonietti, P.F., Facciola, C., Russo, A., Verani, M.: Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids. MOX Report No. 55/2016 (2016a). https://www.mate.polimi.it/biblioteca/add/qmox/55-2016.pdf. Accessed 14 Jan 2019
  7. Antonietti, P.F., Formaggia, L., Scotti, A., Verani, M., Verzotti, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM Math. Model. Numer. Anal. 50(3), 809–832 (2016b).  https://doi.org/10.1051/m2an/2015087
  8. Bastian, P., Chen, Z., Ewing, R.E., Helmig, R., Jakobs, H., Reichenberger, V.: Numerical simulation of multiphase flow in fractured porous media. Numer. Treat. Multiph. Flows Porous Media 52, 50–68 (1999).  https://doi.org/10.1007/3-540-45467-5_4 CrossRefzbMATHGoogle Scholar
  9. Benedetto, M.F., Berrone, S., Pieraccini, S., Scialò, S.: The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280, 135–156 (2014).  https://doi.org/10.1016/j.cma.2014.07.016 MathSciNetCrossRefzbMATHGoogle Scholar
  10. Berrone, S., Pieraccini, S., Scialò, S.: Non-stationary transport phenomena in networks of fractures: effective simulations and stochastic analysis. Comput. Methods Appl. Mech. Eng. 315, 1098–1112 (2016).  https://doi.org/10.1016/j.cma.2016.12.006 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Berrone, S., Pieraccini, S., Scialò, S.: Flowsimulations in porous media with immersed intersecting fractures. J. Comput. Phys. 345, 768–791 (2017).  https://doi.org/10.1016/j.jcp.2017.05.049 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Boffi, D., Di Pietro, D.A.: Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM Math. Model. Numer. Anal. 52(1), 1–28 (2018).  https://doi.org/10.1051/m2an/2017036 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Boon, W.M., Nordbotten, J.M., Yotov, I.: Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. (2018).  https://doi.org/10.1137/17M1139102
  14. Brenner, K., Hennicker, J., Masson, R., Samier, P.: Hybrid-dimensional modelling of twophase flow through fractured porous media with enhanced matrix fracture transmission conditions. J. Comput. Phys. 357, 100–124 (2018).  https://doi.org/10.1016/j.jcp.2017.12.003 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Chave, F., Di Pietro, D.A., Formaggia, L.: A Hybrid High-Order method for darcy flows in fractured porous media. SIAM J. Sci. Comput. 40(2), A1063–A1094 (2018).  https://doi.org/10.1137/17M1119500 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Chernyshenko, A., Olshanskii, M., Vassilevski, Y.: A hybrid finite volume-finite element method for bulk-surface coupled problems. J. Comput. Phys. 352, 516–533 (2016).  https://doi.org/10.1016/j.jcp.2017.09.064 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the Hybrid High-Order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016).  https://doi.org/10.1051/m2an/2015051 MathSciNetCrossRefzbMATHGoogle Scholar
  18. D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM Math. Model. Numer. Anal. 46(2), 465–489 (2012).  https://doi.org/10.1051/m2an/2011148 CrossRefzbMATHGoogle Scholar
  19. Del Pra, M., Fumagalli, A., Scotti, A.: Well-posedness of fully coupled fracture/bulk Darcy flow with XFEM. SIAM J. Numer. Anal. 55(2), 785–811 (2017).  https://doi.org/10.1137/15M1022574 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Di Pietro, D.A., Droniou, J.: A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017).  https://doi.org/10.1090/mcom/3180 MathSciNetCrossRefzbMATHGoogle Scholar
  21. Di Pietro, D.A., Ern, A.: Equilibrated tractions for the Hybrid High-Order method. C. R. Acad. Sci. Paris Ser. I 353, 279–282 (2015).  https://doi.org/10.1016/j.crma.2014.12.009 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Di Pietro, D.A., Tittarelli, R.: Numerical methods for PDEs. State of the art techniques. In: Formaggia, L., Di Pietro, D.A., Ern, A. (eds.) SEMA-SIMAI 15. Springer (2018). Chap. An introduction to Hybrid High-Order methods. ISBN: 978-3-319-94675-7 (Print) 978-3-319-94676-4 (eBook). http://arxiv.org/abs/1703.05136
  23. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014).  https://doi.org/10.1515/cmam-2014-0018. Open accessMathSciNetCrossRefzbMATHGoogle Scholar
  24. Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection–diffusion–reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015).  https://doi.org/10.1137/140993971 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Faille, I., Flauraud, E., Nataf, F., Pégaz-Fiornet, S., Schneider, F., Willien, F.: A new fault model in geological basin modelling. Application of finite volume scheme and domain decomposition methods. In: Herbin, R., Kroner, D. (eds.) Finite Volumes for Complex Applications III, pp. 543–550. Kogan Page Science (2002)Google Scholar
  26. Flemisch, B., Fumagalli, A., Scotti, A.: A review of the XFEM-basedapproximation of flowin fractured porous media. In: Ventura, G., Benvenuti, E. (eds.) Advances in Discretization Methods. SEMA-SIMAI, vol. 12. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41246-7_3 CrossRefzbMATHGoogle Scholar
  27. Formaggia, L., Quarteroni, A., Vergara, C.: On the physical consistency between threedimensional and one-dimensional models in haemodynamics. J. Comput. Phys. 244, 97–112 (2013).  https://doi.org/10.1016/j.jcp.2012.08.001 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Fumagalli, A., Keilegavlen, E.: Dual virtual element method for discrete fractures networks. SIAM J. Sci. Comput. 40(1), B228–B258 (2018).  https://doi.org/10.1137/16M1098231 MathSciNetCrossRefzbMATHGoogle Scholar
  29. Fumagalli, A., Scotti, A.: A reduced model for flow and transport in fractured porous media with non-matching grids. Numer. Math. Adv. Appl. 2013, 499–507 (2011).  https://doi.org/10.1007/978-3-642-33134-3_53 CrossRefzbMATHGoogle Scholar
  30. Gross, S., Olshanskii, M.A., Reusken, A.: A trace finite element method for a class of coupled bulk-interface transport problems. ESAIM Math. Model. Numer. Anal. 49(5), 1303–1330 (2015).  https://doi.org/10.1051/m2an/2015013 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Matrix Anal. Appl. 26(5), 1667–1691 (2005).  https://doi.org/10.1137/S1064827503429363 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Peaceman, D.W.: Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement. Soc. Pet. Eng. J. 6, 213–216 (1966).  https://doi.org/10.2118/1362-PA CrossRefGoogle Scholar
  33. Scotti, A., Formaggia, L., Sottocasa, F.: Analysis of a mimetic finite difference approximation of flows in fractured porous media. ESAIM Math. Model. Numer. Anal. (2017).  https://doi.org/10.1051/m2an/2017028

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Montpelliérain Alexander GrothendieckUniversity of MontpellierMontpellierFrance
  2. 2.Politecnico di Milano, MOXMilanItaly

Personalised recommendations