Advertisement

GEM - International Journal on Geomathematics

, Volume 8, Issue 2, pp 191–217 | Cite as

Meshfree generalized finite difference methods in soil mechanics—part II: numerical results

  • I. MichelEmail author
  • S. M. I. Bathaeian
  • J. Kuhnert
  • D. Kolymbas
  • C.-H. Chen
  • I. Polymerou
  • C. Vrettos
  • A. Becker
Original Paper

Abstract

In geotechnical engineering, simulations are of utmost importance. Due to large deformations, meshfree methods are more suitable than classical meshbased methods. Nevertheless, they have to be validated on the laboratory scale in order to guarantee reliable conclusions for real life applications. In this contribution, we complete the theoretical description of the two novel meshfree generalized finite difference methods Finite Pointset Method (FPM) and Soft PARticle Code (SPARC) by numerical results for the standard benchmark problems oedometric and triaxial test. We focus on the quality of the results as well as on the rate-independent character of the numerical implementation of the nonlinear barodesy model for sand.

Keywords

Generalized finite difference methods Meshfree methods Finite Pointset Method (FPM) Soft PARticle Code (SPARC) Barodesy model 

Mathematics Subject Classification

35D35 35Q74 65D05 65M99 

Notes

Acknowledgements

This paper presents results of the joint research project “Ein netzfreier numerischer Zugang zu Böden in Ruhe und im Fließen (A meshfree numerical approach for soils at rest and in flow). (1) Kaiserslautern, Germany: The group consisting of Prof. Dr.-Ing. C. Vrettos, Dr.-Ing. A. Becker (Division of Soil Mechanics and Foundation Engineering, University of Kaiserslautern), Dr. J. Kuhnert, Dr. I. Michel (Fraunhofer Institute for Industrial Mathematics ITWM) is supported by the “Deutsche Forschungsgemeinschaft (DFG)”, Germany. (2) Innsbruck, Austria: The group consisting of Prof. Dr.-Ing. D. Kolymbas, S.M.I. Bathaeian, Dr.-Ing. C.-H. Chen (temporarily), Dr.-Ing. I. Polymerou (temporarily) (Division of Geotechnical and Tunnel Engineering, University of Innsbruck) is supported by the “Fonds zur Förderung der wissenschaftlichen Forschung (FWF)”, Austria.

References

  1. Abe, K., Nakamura, S., Nakamura, H., Shiomi, K.: Numerical study on dynamic behavior of slope models including weak layers from deformation to failure using material point method. Soils Found 57(2), 155–175 (2017)CrossRefGoogle Scholar
  2. Bandara, S., Soga, K.: Coupling of soil deformation and pore fluid flow using material point method. Comput. Geotech. 63, 199–214 (2015)CrossRefGoogle Scholar
  3. Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541 (2000)CrossRefzbMATHGoogle Scholar
  4. Bathe, K.-J.: Finite Element Procedures, 2nd edn. Bathe K-J, Watertown (2014). ISBN 978-0-9790049-5-7zbMATHGoogle Scholar
  5. Beuth, L., Więckowski, L., Vermeer, P.A.: Solution of quasi-static large-strain problems by the material point method. Int. J. Numer. Anal. Methods Geomech. 35, 1451–1465 (2011)Google Scholar
  6. Beuth, L., Ceccato, F., Rohe, A.: Modelling of cone penetration testing with the matrial point method. Bemessen mit numerischen Methoden, Workshop 24./25.09.2013, TU Hamburg-Harburg, pp. 8–25 (2013)Google Scholar
  7. Bhandari, T., Hamad, F., Moormann, C., Sharma, K.G., Westrich, B.: Numerical modelling of seismic slope failure using MPM. Comput. Geotech. 75, 126–134 (2016)CrossRefGoogle Scholar
  8. Blanc T (2008) Numerical simulation of debris flows with the 2D-SPH depth integrated model. Master Thesis, Institute for Mountain Risk Engineering, University of Natural Resources and Applied Life Sciences, ViennaGoogle Scholar
  9. Blanc, T., Pastor, M.: A stabilized smoothed particle hydrodynamics, Taylor–Galerkin algorithm for soil dynamics problems. Int. J. Numer. Anal. Methods Geomech. 37, 1–30 (2013)CrossRefGoogle Scholar
  10. Bui, H.H., Fukagawa, R.: An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure. Int. J. Numer. Anal. Methods Geomech. (2011). doi: 10.1002/nag.1084 Google Scholar
  11. Bui, H.H., Kodikara, J.A., Pathegama, R., Bouazza, A., Haque, A.: Large deformation and post-failure simulations of segmental retaining walls using mesh-free method (SPH). CoRR (2015). arXiv:1501.04000
  12. Carbonell, J.M., Oñate, E., Suárez, B.: Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method. Comput. Mech. 52(3), 607–629 (2013)CrossRefzbMATHGoogle Scholar
  13. Chen, C.-H.: Development of Soft Particle Code (SPARC). Ph.D. Thesis, University of Innsbruck, Logos Verlag Berlin GmbH (2014)Google Scholar
  14. Chen, J.-S., Hillman, M., Chi, S.-W.: Meshfree methods: progress made after 20 years. J. Eng. Mech. 143(4), 04017001 (2017)CrossRefGoogle Scholar
  15. Coetzee, C.J., Vermeer, P.A., Basson, A.H.: The modelling of anchors using the material point method. Int. J. Numer. Anal. Methods Geomech. 29, 879–895 (2005)CrossRefzbMATHGoogle Scholar
  16. Cuéllar, P., Baeßler, M., Rücker, W.: Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads. Granul. Matter 11, 379–390 (2009)CrossRefGoogle Scholar
  17. Dang, H.K., Meguid, M.A.: An efficient finite-discrete element method for quasi-static nonlinear soil–structure interaction problems. Int. J. Numer. Anal. Methods Geomech. 37(2), 130–149 (2013)CrossRefGoogle Scholar
  18. Desrues, J., Zweschper, B., Vermeer, P.A.: Database for Tests on Hostun RF Sand. Technical Report, Institute of Geotechnical Engineering, University of Stuttgart (2000)Google Scholar
  19. Drumm, C., Tiwari, S., Kuhnert, J., Bart, H.J.: Finite pointset method for simulation of the liquid–liquid flow field in an extractor. Comput. Chem. Eng. 32(12), 2946–2957 (2008)CrossRefGoogle Scholar
  20. Dufour, F., Mühlhaus, H.-B., Moresi, L.: A particle-in-cell formulation for large deformation in Cosserat continua. In: Mühlhaus, H.-B., Dyskin, A., Pasternak, E. (eds.) Bifurcation and Localization in Soils and Rocks, pp. 133–138. Balkema, Leiden (2001)Google Scholar
  21. Gabrieli, F., Cola, S., Calvetti, F.: Use of an up-scaled DEM model for analysing the behavior of a shallow foundation on a model slope. Geomech. Geoeng. 4(2), 109–122 (2009)CrossRefGoogle Scholar
  22. Holmes, D.W., Williams, J.R., Tilke, P., Leonardi, C.R.: Characterizing flow in oil reservoir rock using SPH: absolute permeability. Int. J. Numer. Anal. Methods Geomech. 61(7), 1–6 (2011)Google Scholar
  23. Holtz, R.D., Kovacs, W.D.: An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs (1981)Google Scholar
  24. Hu, M., Liu, M.B., Xie, M.W., Liu, G.R.: Three-dimensional run-out analysis and prediction of flow-like landslides using smoothed particle hydrodynamics. Environ. Earth Sci. 73(4), 1629–1640 (2015)CrossRefGoogle Scholar
  25. Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. (2012). doi: 10.1002/nag.2146 Google Scholar
  26. Jefferies, A., Kuhnert, J., Aschenbrenner, L., Giffhorn, U.: Finite pointset method for the simulation of a vehicle travelling through a body of water. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VII, pp. 205–221. Springer, Berlin (2015)Google Scholar
  27. Jiang, M., Yin, Z.-Y.: Analysis of stress redistribution in soil and earth pressure on tunnel lining using discrete element method. Tunn. Undergr. Sp. Tech. 32, 251–259 (2012)CrossRefGoogle Scholar
  28. Kardani, O., Nazem, M., Kardani, M., Sloan, S.: On the application of the maximum entropy meshfree method for elastoplastic geotechnical analysis. Comput. Geotech. 84, 68–77 (2017)CrossRefGoogle Scholar
  29. Khoshghalb, A., Khalili, N.: A Meshfree method for fully coupled analysis of flow and deformation in unsaturated porous media. Int. J. Numer. Anal. Methods Geomech. (2012). doi: 10.1002/nag.1120 Google Scholar
  30. Khoshghalb, A., Khalili, N.: A meshfree method for fully coupled analysis of flow and deformation in unsaturated porous media. Int. J. Numer. Anal. Methods Geomech. 37(7), 716–743 (2013)CrossRefGoogle Scholar
  31. Khoshghalb, A., Khalili, N.: An alternative approach for quasi-static large deformation analysis of saturated porous media using meshfree method. Int. J. Numer. Anal. Methods Geomech. 39, 913–936 (2015)CrossRefGoogle Scholar
  32. Kolymbas, D.: Barodesy: a new hypoplastic approach. Int. J. Numer. Anal. Methods Geomech. 36, 1220–1240 (2011)CrossRefGoogle Scholar
  33. Kolymbas, D.: Barodesy: a new constitutive frame for soils. Géotech. Lett. 2, 17–23 (2012)CrossRefGoogle Scholar
  34. Kolymbas, D.: Introduction to barodesy. Géotechnique 65(1), 52–65 (2015). doi: 10.1680/geot.14.P.151 CrossRefGoogle Scholar
  35. Komoróczi, A., Abe, S., Urai, J.L.: Meshless numerical modeling of brittle-viscous deformation: first results on boundinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH). Comput. Geosci. 17(2), 373–390 (2013)CrossRefMathSciNetGoogle Scholar
  36. Kuhnert, J.: Finite Pointset Method (FPM): meshfree flow solver with applications to elastoplastic material laws. In: Ońate, E., Owen, D.R.J. (eds) Proceedings of International Conference on Particle Based Methods: Fundamentals and Applications, Particles 2009, CIMNE, pp. 423–426 (2009)Google Scholar
  37. Kuhnert, J.: Meshfree numerical scheme for time dependent problems in fluid and continuum mechanics. In: Sundar, S. (ed.) Advances in PDE Modeling and Computation, pp. 119–136. Ane Books, New Delhi (2014)Google Scholar
  38. Kuhnert, J., Ostermann, I.: Finite Pointset Method (FPM) and an application in soil mechanics. In: Pardo-Igúzquiza, E., Guardiola-Albert, C., Heredia, J., Moreno-Merino, L., Durán, J., Vargas-Guzmán, J. (eds.) Mathematics of Planet Earth. Lecture Notes in Earth System Sciences, pp. 815–818. Springer, Berlin (2014)Google Scholar
  39. Lim, K.-W., Andrade, J.E.: Granular element method for three-dimensional discrete element method calculations. Int. J. Numer. Anal. Methods Geomech. 38(2), 167–188 (2014)CrossRefGoogle Scholar
  40. Medicus, G., Fellin, W., Kolymbas, D.: Barodesy for clay. Géotech. Lett. 2, 173–180 (2012)CrossRefGoogle Scholar
  41. Medicus, G., Kolymbas, D., Fellin, W.: Proportional stress and strain paths in barodesy. Int. J. Numer. Anal. Methods Geomech. 40(4), 509–522 (2016)CrossRefGoogle Scholar
  42. Medicus, G., Fellin, W.: An improved version of barodesy for clay. Acta Geotech. 12(2), 365–376 (2017)CrossRefGoogle Scholar
  43. Michel, I., Kuhnert, J.: Meshfree numerical simulation in soil mechanics with the Finite Pointset Method (FPM). In: Schaeben, H., Tolosana Delgado, R., van den Boogaart, K.G., van den Boogaart, R. (eds) Proceedings of IAMG 2015 Freiberg, pp. 652–658 (G0102) (2015). ISBN 978-3-00-050337-5 (DVD)Google Scholar
  44. Michel, I., Kuhnert, J., Kolymbas, D.: Meshfree simulation of avalanches with the Finite Pointset Method (FPM). Geophysical Research Abstracts, vol. 19, EGU2017-13203, EGU General Assembly 2017, Vienna (2017)Google Scholar
  45. Murakami, A., Setsuyasu, T., Arimoto, S.: Mesh-free method for soil–water coupled problem within finite strain and its numerical validity. Soils Found. 45(2), 145–154 (2005)Google Scholar
  46. Obermayr, M., Dressler, K., Vrettos, C., Eberhard, P.: A bonded-particle model for cemented sand. Comput. Geotech. 49, 229–313 (2013)CrossRefGoogle Scholar
  47. Obermayr, M., Vrettos, C.: Anwendung der Diskrete Elemente Methode zur Vorhersage von Kräften bei der Bodenbearbeitung. Geotechnik 36(4), 231–242 (2013)CrossRefGoogle Scholar
  48. Oñate, E., Idelsohn, S.R., Celigueta, M.A., Rossi, R., Marti, J., Carbonell, J.M., Ryzhakov, P., Suárez, B.: Advances in the particle finite element method (PFEM) for solving coupled problems in engineering. In: Oñate, E., Owen, R. (eds.) Particle-Based Methods, pp. 1–49. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  49. Oñate, E., Labra, C., Zárate, F., Rojek, J.: Modelling and simulation of the effect of blast loading on structures using an adaptive blending of discrete and finite element methods. In: Escuder-Bueno, I., Altarejas-García, L., Castillo-Rodríguez, J.T., Matheu, E. (eds.) Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, pp. 365–371. Taylor & Francis Group, London (2011)CrossRefGoogle Scholar
  50. Ostermann, I., Kuhnert, J., Kolymbas, D., Chen, C.-H., Polymerou, I., Šmilauer, V., Vrettos, C., Chen, D.: Meshfree generalized finite difference methods in soil mechanics—part I: theory. Int. J. Geomath. 4, 167–184 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  51. Pastor, M., Haddad, B., Sorbino, G., Cuomo, S., Drempetic, V.: A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods Geomech. 33, 143–172 (2008)CrossRefzbMATHGoogle Scholar
  52. Peng, C., Wu, W., Yu, H., Wang, C.: A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotech. 10(6), 703–717 (2015)CrossRefGoogle Scholar
  53. Polymerou, I.: Untersuchung großer Verformungen in der Vertushka. PhD Thesis, University of Innsbruck, Logos Verlag Berlin GmbH (2017)Google Scholar
  54. Schenkengel, K.-U., Vrettos, C.: Modelling of liquefaction-induced lateral spreading using the Lattice Boltzmann method. In: Proceedings 5th International conference on Earthquake Geotechnical Engineering, Paper No MOLSC-922621417 (2011)Google Scholar
  55. Schneider-Muntau, B., Chen, C.-H., Bathaeian, S.M.I.: Simulation of shear bands with Soft PARticle Code (SPARC) and FE. Int. J. Geomath. 8, 135–151 (2017)CrossRefMathSciNetGoogle Scholar
  56. Sloan, S.W., Nazem, M., Zakrzewski, N., Cassidy, M.: On application of the maximum entropy meshless method for large deformation analysis of geotechnical problems. Appl. Mech. Mater. 846, 331–335 (2016)CrossRefGoogle Scholar
  57. Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S.: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3), 1–26 (2015)Google Scholar
  58. Suchde, P., Kuhnert, J.: Point cloud movement for fully Lagrangian meshfree methods. (2017) arXiv:1704.00618
  59. Suchde, P., Kuhnert, J., Tiwari, S.: On meshfree GFDM solvers for the incompressible Navier–Stokes equations. (2017) arXiv:1701.03427
  60. Suchde, P., Kuhnert, J., Schröder, S., Klar, A.: A flux conserving meshfree method for conservation laws. Int. J. Numer. Methods Eng. (2017). doi: 10.1002/nme.5511 Google Scholar
  61. Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Wegener, R.: A meshfree method for simulations of interactions between fluids and flexible structures. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations III, pp. 249–264. Springer, Berlin (2007)CrossRefGoogle Scholar
  62. Tiwari, S., Kuhnert, J.: A meshfree method for incompressible fluid flows with incorporated surface tension. Revue Eur. Élém. 11(7–8), 965–987 (2002)zbMATHGoogle Scholar
  63. Tiwari, S., Kuhnert, J.: Finite Pointset Method based on the projection method for simulations of the incompressible Navier–Stokes equations. In: Griebel, M., Schweitzer, M.A. (eds.) Lecture Notes in Computational Science and Engineering, vol. 26, pp. 373–387. Springer, Berlin (2002)Google Scholar
  64. Tiwari, S., Kuhnert, J.: Grid free method for solving poisson equation. In: Rao, G.S. (ed.) Wavelet Analysis and Applications, pp. 151–166. New Age International Publishers, New Delhi (2004)Google Scholar
  65. Tiwari, S., Kuhnert, J.: A numerical scheme for solving incompressible and low mach number flows by Finite Pointset Method. In: Griebel, M., Schweitzer, M.A. (eds.) Lecture Notes in Computational Science and Engineering, vol. 43, pp. 191–206. Springer, Berlin (2005)Google Scholar
  66. Tiwari, S., Kuhnert, J.: Modeling of two-phase flows with surface tension by Finite Pointset Method (FPM). J. Comput. Appl. Math. 203(2), 376–386 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  67. Tramecon, A., Kuhnert, J.: Simulation of advanced folded airbags with VPS-PAMCRASH/FPM: development and validation of turbulent flow numerical simulation techniques applied to curtain bag deployments. SAE Technical Paper 2013-01-1158 (2013) doi: 10.4271/2013-01-1158
  68. Tootoonchi, A., Liu, G.R., Khalili, N.: A cell-based smoothed point interpolation method for flow-deformation analysis of saturated porous media. Comput. Geotech. 75, 159–173 (2016)CrossRefGoogle Scholar
  69. Uhlmann, E., Gerstenberger, R., Kuhnert, J.: Cutting simulation with the meshfree Finite Pointset Method. Procedia CIRP 8, 391–396 (2013)CrossRefGoogle Scholar
  70. Vermeer, P.A., Beuth, L., Benz, T.: A Quasi-static method for large deformation problems in geomechanics. In: Proceedings 12th IACMAG, pp. 55–63 (2008)Google Scholar
  71. Wu, C.T., Chen, J.S., Chi, L., Huck, F.: Lagrangian meshfree formulation for analysis of geotechnical materials. J. Eng. Mech. 127(5), 440–449 (2001)CrossRefGoogle Scholar
  72. Zhu, H.H., Miao, Y.B., Cai, Y.C.: Meshless natural neighbour method and its application in elasto-plastic problems. In: Liu, G., Tan, V., Han, X. (eds.) Computational Methods, pp. 1465–1475. Springer, Berlin (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Fraunhofer Institute for Industrial Mathematics ITWMKaiserslauternGermany
  2. 2.Division of Geotechnical and Tunnel EngineeringUniversity of InnsbruckInnsbruckAustria
  3. 3.Division of Soil Mechanics and Foundation EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations