Advertisement

New insights into the seismic time term method for heterogeneous upper mantle slowness structures

  • K. Wittig
  • T. RybergEmail author
  • M. H. Weber
Original Paper
  • 109 Downloads

Abstract

The seismic time term method of Gardner (Geophysics 4:247–259, 1939) has become popular in the context of seismic \(P_n\) studies, since it provides a possibility to estimate not only the Earth’s crustal thickness, but also the P-wave slowness of the uppermost mantle. In the last decades an extended form of this Time Term Method has been extensively used in order to predict a heterogeneous isotropic or anisotropic upper mantle slowness function. One of the main goals of this study is to formalize the mathematical construction for which the Time Term Equations are indeed linearized versions of the Travel Time Equations for such a complex laterally varying slowness function. For this purpose, an alternative definition of Time Terms is given that allows to consider them as parts of the exact travel time equation. In the case of constant upper mantle slowness functions these terms coincide with the classical Time Terms of Gardner. As a consequence, an alternative derivation of the extended Time Term Method can be given for heterogeneous (isotropic) upper mantle slowness functions.

Keywords

\(P_n\) tomography Crust Upper mantle Seismic theory 

Mathematics Subject Classification

86A15 (Seismology) 86A22 (Inverse theory) 

Notes

Acknowledgements

This study was funded via a grant from the Helmholtz Centre Potsdam—GFZ German Research Centre for Geosciences. We would like to thank the anonymous reviewer for his helpful comments to improve the paper.

References

  1. Baumont, D., Paul, A., Zandt, G., Beck, S.L.: Inversion of \(P_n\) travel times for lateral variations of Moho geometry beneath the Central Andes and comparison with the receiver functions. Geophys. Res. Lett. 28(8), 1663–1666 (2001)CrossRefGoogle Scholar
  2. Berry, M.J., West, G.F.: An interpretation of the first-arrival data of the Lake Superior Experiment by the time-term method. Bull. Seismol. Soc. Am. 56(1), 141–171 (1966)Google Scholar
  3. Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-dimensional variational problems. Oxford Series in Mathematics and its Applications 15. Clarendon Press, Oxford (1998). https://books.google.com.au/books?id=fursm_sGf_EC&pg=PR3&source=gbs_selected_pages&cad=2#v=onepage&q&f=false
  4. Cellina, A., Ferriero, A., Marchini, E.M.: On the existence of solutions to a class of minimum time control problems and applications to Fermat’s Principle and to the Brachystocrone. Syst. Control Lett. 55(2), 119–123 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Červený, V.: Theory of seismic head waves. University of Toronto Press, Cerveny (1971)Google Scholar
  6. Červený, V.: Seismic ray theory. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  7. Červený, V., Klimeš, L., Pčenčik, I.: Paraxial ray approximations in the computation of seismic wavefields in inhomogeneous media. Geophys. J. R. Astr. Soc. 79, 89–104 (1984)CrossRefzbMATHGoogle Scholar
  8. Enderle, U., Mechie, J., Sobolev, S., Fuchs, K.: Seismic anisotropy within the uppermost mantle of southern Germany. Geophys. J. Int. 125, 747–767 (1996)CrossRefGoogle Scholar
  9. Gardner, L.W.: An areal plan of mapping subsurface structure by refraction shooting. Geophysics 4, 247–259 (1939)CrossRefGoogle Scholar
  10. Hearn, T.M.: \(P_n\) travel times in Southern California. J. Geophys. Res. 89(B3), 1843–1855 (1984)CrossRefGoogle Scholar
  11. Hearn, T.M., Clayton, R.W.: Lateral velocity variations in southern California. I. Results for the upper crust from \(P_g\) waves. Bull. Seismol. Soc. Am. 76(2), 495–509 (1986)Google Scholar
  12. Hearn, T.M., Ni, J.F.: \(P_n\) velocities beneath continental collision zones: the Turkish-Iranian Plateau. Geophys. J. Int. 117(2), 273–283 (1994)CrossRefGoogle Scholar
  13. Iwasaki, T.: Extended time-term method for identifying lateral structural variations from seismic refraction data. Earth Planets Space 54, 663–677 (2002)CrossRefGoogle Scholar
  14. Morris, G.B.: Delay-time-function method and its application to the Lake Superior refraction data. J. Geophys. Res. 77, 297–314 (1972)CrossRefGoogle Scholar
  15. Morris, G.B., Raitt Jr., R.W., Shor, G.G.: Velocity anisotropy and delay-time maps of the mantle near Hawaii. J. Geophys. Res. 74(17), 4300–4316 (1969)CrossRefGoogle Scholar
  16. Raitt Jr., R.W., Shor, G.G., Francis, T.J.G., Morris, G.B.: Anisotropy of the Pacific upper mantle. J. Geophys. Res. 74, 8095–8109 (1969)CrossRefGoogle Scholar
  17. Serrano, I., Hearn, T.M., Moales, J., Torcal, F.: Seismic anisotropy and velocity structure beneath the southern half of the Iberian Peninsula. Phys. Earth Planet. Inter. 150, 317–330 (2005)CrossRefGoogle Scholar
  18. Song, L.P., Koch, M., Koch, K., Schlittenhardt, J.: 2-D anisotropic \(P_n\)-velocity tomography underneath Germany using regional traveltimes. Geophys. J. Int. 157, 645–663 (2004)CrossRefGoogle Scholar
  19. Willmore, P.L.: Comment on how necessary are large-scale refraction experiments. Geophys. J. R. Astr. Soc. 18, 237–240 (1969)CrossRefGoogle Scholar
  20. Willmore, P.L., Bancroft, A.M.: The time term approach to refraction seismology. Geophys. J. R. Astr. Soc. 3, 419–432 (1960)MathSciNetCrossRefGoogle Scholar
  21. Wittig, K.: Untersuchungen zum Time - Term - Verfahren und seiner Anwendung in der \(P_n\)—Tomographie am Beispiel seismischer Feldmessungen in Südafrika. Dissertation, Universität Potsdam, Potsdam (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Helmholtz Centre Potsdam-GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations