Advertisement

The compressible adjoint equations in geodynamics: derivation and numerical assessment

  • Siavash GhelichkhanEmail author
  • Hans-Peter Bunge
Original Paper

Abstract

The adjoint method is a powerful means to obtain gradient information in a mantle convection model relative to past flow structure. While the adjoint equations in geodynamics have been derived for the conservation equations of mantle flow in their incompressible form, the applicability of this approximation to Earth is limited, because density increases by almost a factor of two (Dziewonski and Anderson, Phys Earth Planet Inter 25:297–356, 1981) from the surface to the Core Mantle Boundary. Here we introduce the compressible adjoint equations for the conservation equations in the anelastic-liquid approximation. Our derivation applies an operator formulation in Hilbert spaces, to connect to recent work in seismology (Fichtner et al., Phys Earth Planet Inter 157(1–2):86–104, 2006b) and geodynamics (Horbach et al., Int J Geomath 5(2):163–194, 2014), where the approach was used to derive the adjoint equations for the wave equation and incompressible mantle flow. We present numerical tests of the newly derived equations based on twin experiments, focusing on three simulations. A first, termed Compressible, assumes the compressible forward and adjoint equations, and represents the consistent means of including compressibility effects. A second, termed Mixed, applies the compressible forward equation, but ignores compressibility effects in the adjoint equations, where the incompressible equations are used instead. A third simulation, termed Incompressible, neglects compressibility effects entirely in the forward and adjoint equations relative to the reference twin. The compressible and mixed formulations successfully restore earlier mantle flow structure, while the incompressible formulation yields noticeable artifacts. Our results suggest the use of a compressible formulation, when applying the adjoint method to seismically derived mantle heterogeneity structure.

Keywords

Adjoint method Inverse problem Geodynamics Anelastic-liquid approximation Computational methods 

Mathematics Subject Classification

86–08 86A22 

Notes

Acknowledgments

The authors are grateful to Barbara A. Romanowicz and an anonymous reviewer for constructive suggestions. We would like to thank Willi Freeden for the competent handling of the manuscript.

References

  1. Bello, L., Coltice, N., Rolf, T., Tackley, P.J.: On the predictability limit of convection models of the Earth’s mantle. Geochem. Geophys. Geosyst. 15(6), 2319–2328 (2014). doi: 10.1002/2014GC005254 CrossRefGoogle Scholar
  2. Boussinesq, J.: Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, vol. 2. Gauthier-Villars, Paris (1903)zbMATHGoogle Scholar
  3. Braun, J.: The many surface expressions of mantle dynamics. Nat. Geosci. 3(12), 825–833 (2010). doi: 10.1038/ngeo1020 CrossRefGoogle Scholar
  4. Bunge, H.P.: Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Phys. Earth Planet. Inter. 153(1–3), 3–10 (2005). doi: 10.1016/j.pepi.2005.03.017 CrossRefGoogle Scholar
  5. Bunge, H.P., Richards, M.A., Baumgardner, J.R.: Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379(6564), 436–438 (1996). doi: 10.1038/379436a0 CrossRefGoogle Scholar
  6. Bunge, H.P., Richards, M.A., Baumgardner, J.R.: A sensitivity study of three-dimensional spherical mantle convection at \(10^8\) Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change. J. Geophys. Res. 102(B6), 11991–12007 (1997). doi: 10.1029/96JB03806
  7. Bunge, H.P., Richards, M.A., Lithgow-Bertelloni, C., Baumgardner, J.R., Grand, S.P., Romanowicz, B.A.: Time scales and heterogeneous structure in geodynamic earth models. Science 280(5360), 91–95 (1998). doi: 10.1126/science.280.5360.91 CrossRefGoogle Scholar
  8. Bunge, H.P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152(2), 280–301 (2003). doi: 10.1046/j.1365-246X.2003.01823.x CrossRefGoogle Scholar
  9. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L.C., Tan, E., Gurnis, M., Ghattas, O.: Large-scale adaptive mantle convection simulation. Geophys. J. Int. 192(3), 889–906 (2013). doi: 10.1093/gji/ggs070 CrossRefGoogle Scholar
  10. Colli, L., Bunge, H.P., Schuberth, B.S.A.: On retrodictions of global mantle flow with assimilated surface velocities. Geophys. Res. Lett. (2015). doi: 10.1002/2015GL066001
  11. Davies, G.F.: Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  12. Davies, D.R., Goes, S., Davies, J.H., Schuberth, B.S.A., Bunge, H.P., Ritsema, J.: Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 353–354, 253–269 (2012). doi: 10.1016/j.epsl.2012.08.016 CrossRefGoogle Scholar
  13. Dziewonski, A.M., Anderson, D.L.: Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981). doi: 10.1016/0031-9201(81)90046-7 CrossRefGoogle Scholar
  14. Fichtner, A., Bunge, H.P., Igel, H.: The adjoint method in seismology: II - Applications: traveltimes and sensitivity functionals. Phys. Earth Planet. Inter. 157(1–2), 105–123 (2006a). doi: 10.1016/j.pepi.2006.03.018
  15. Fichtner, A., Bunge, H.P., Igel, H.: The adjoint method in seismology: I—theory. Phys. Earth Planet. Inter. 157(1–2), 86–104 (2006b). doi: 10.1016/j.pepi.2006.03.016
  16. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964). doi: 10.1093/comjnl/7.2.149 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J., Lhuillier, F.: An introduction to data assimilation and predictability in geomagnetism. Space Sci. Rev. 155(1–4), 247–291 (2010). doi: 10.1007/s11214-010-9669-4 CrossRefGoogle Scholar
  18. French, S.W., Romanowicz, B.A.: Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199(3), 1303–1327 (2014). doi: 10.1093/gji/ggu334 CrossRefGoogle Scholar
  19. Glatzmaier, G.A.: Numerical simulations of mantle convection: time-dependent, three-dimensional, compressible, spherical shell. Geophys. Astrophys. Fluid Dyn. 43(2), 223–264 (1988). doi: 10.1080/03091928808213626 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Grand, S.P., van der Hilst, R.D., Widiyantoro, S.: High resolution global tomography: a snapshot of convection in the Earth. GSA Today 7(4), 1–7 (1997)Google Scholar
  21. Grüneisen, E.: Theorie des festen Zustandes einatomiger Elemente. Ann. Phys. 344(12), 257–306 (1912). doi: 10.1002/andp.19123441202 CrossRefzbMATHGoogle Scholar
  22. Hofmeister, A.M.: Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283(5408), 1699–1706 (1999). doi: 10.1126/science.283.5408.1699 CrossRefGoogle Scholar
  23. Horbach, A., Bunge, H.P., Oeser, J.: The adjoint method in geodynamics: derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model. Int. J. Geomath. 5(2), 163–194 (2014). doi: 10.1007/s13137-014-0061-5 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ismail-Zadeh, A., Schubert, G., Tsepelev, I., Korotkii, A.: Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys. Earth Planet. Inter. 145(1–4), 99–114 (2004). doi: 10.1016/j.pepi.2004.03.006 CrossRefGoogle Scholar
  25. Jarvis, G.T., McKenzie, D.P.: Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech. 96(03), 515–583 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Leng, W., Zhong, S.: Controls on plume heat flux and plume excess temperature. J. Geophys. Res. 113(B4), B04408 (2008). doi: 10.1029/2007JB005155
  27. Liu, L., Spasojevic, S., Gurnis, M.: Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322(5903), 934–938 (2008). doi: 10.1126/science.1162921 CrossRefGoogle Scholar
  28. McKenzie, D.P., Roberts, J.M., Weiss, N.O.: Convection in the Earth’s mantle: towards a numerical simulation. J. Fluid Mech. 62(03), 465–538 (1974)CrossRefzbMATHGoogle Scholar
  29. McNamara, A.K., Zhong, S.: Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437(7062), 1136–1139 (2005). doi: 10.1038/nature04066 CrossRefGoogle Scholar
  30. Mitrovica, J.X.: Haskell [1935] revisited. J. Geophys. Res. 101(B1), 555–569 (1996). doi: 10.1029/95JB03208 CrossRefGoogle Scholar
  31. Murnaghan, F.D.: Finite Deformation of an Elastic Body. Wiley, New York (1951)zbMATHGoogle Scholar
  32. Oeser, J., Bunge, H.P., Mohr, M.: Cluster design in the earth sciences: TETHYS. In: High Performance Computing and Communications, Lecture Notes in Computer Science, pp. 31–40. Springer, Berlin (2006). doi: 10.1007/11847366_4
  33. Ritsema, J., Deuss, A., van Heijst, H.J., Woodhouse, J.H.: S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184(3), 1223–1236 (2011)CrossRefGoogle Scholar
  34. Schuberth, B.S.A., Bunge, H.P., Ritsema, J.: Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst. 10(5) (2009a). doi: 10.1029/2009GC002401
  35. Schuberth, B.S.A., Bunge, H.P., Steinle-Neumann, G., Moder, C., Oeser, J.: Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: high plume excess temperatures in the lowermost mantle. Geochem Geophys Geosyst 10(1) (2009b). doi: 10.1029/2008GC002235
  36. Serrin, J.: Mathematical principles of classical fluid mechanics. In: Fluid Dynamics I/Strömungsmechanik I, Encyclopedia of Physics/Handbuch der Physik, pp. 125–263. Springer, Berlin (1959). doi: 10.1007/978-3-642-45914-6_2
  37. Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., Chandler, M.: Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113(3–4), 212–270 (2012)CrossRefGoogle Scholar
  38. Shephard, G.E., Bunge, H.P., Schuberth, B.S.A., Müller, R.D., Talsma, A.S., Moder, C., Landgrebe, T.C.W.: Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure. Earth Planet. Sci. Lett. 317–318, 204–217 (2012). doi: 10.1016/j.epsl.2011.11.027 CrossRefGoogle Scholar
  39. Simmons, N.A., Myers, S.C., Johannesson, G., Matzel, E.: LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction. J. Geophys. Res. 117(B10), B10302 (2012)CrossRefGoogle Scholar
  40. Stacey, F.D., Davis, P.M.: High pressure equations of state with applications to the lower mantle and core. Phys. Earth Planet. Inter. 142(3–4), 137–184 (2004)CrossRefGoogle Scholar
  41. Tackley, P.J.: Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth Sci. Rev. 110(1–4), 1–25 (2012). doi: 10.1016/j.earscirev.2011.10.001 CrossRefGoogle Scholar
  42. Turcotte, D.L., Oxburgh, E.R.: Mantle convection and the new global tectonics. Annu. Rev. Fluid Mech. 4(1), 33–66 (1972)CrossRefGoogle Scholar
  43. Vynnytska, L., Bunge, H.P.: Restoring past mantle convection structure through fluid dynamic inverse theory: regularisation through surface velocity boundary conditions. Int. J. Geomath. 6(1), 83–100 (2014). doi: 10.1007/s13137-014-0060-6 MathSciNetCrossRefzbMATHGoogle Scholar
  44. Weismüller, J., Gmeiner, B., Ghelichkhan, S., Huber, M., John, L., Wohlmuth, B., Rüde, U., Bunge, H.P.: Fast asthenosphere motion in high-resolution global mantle flow models. Geophys. Res. Lett. 42(18), 2015GL063727 (2015). doi: 10.1002/2015GL063727
  45. Zhong, S., Liu, X.: The long-wavelength mantle structure and dynamics and their implications for large-scale tectonics and volcanism in the Phanerozoic. Gondwana Res. (2015). doi: 10.1016/j.gr.2015.07.007

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesLudwig Maximilian UniversityMunichGermany

Personalised recommendations