Advertisement

Restoring past mantle convection structure through fluid dynamic inverse theory: regularisation through surface velocity boundary conditions

  • Lyudmyla VynnytskaEmail author
  • Hans-Peter Bunge
Original Paper

Abstract

Mantle convection is governed by coupled, non-linear conservation equations for mass, momentum and energy. In the forward problem the equations relate an initial to a final state of the convective system, while one can pose an inverse problem to restore earlier structure from a final state. Although the ability to restore earlier mantle structure is essential in geodynamics, allowing one to test uncertain parameters of mantle convection models against constraints derived from the geologic record, the convergence properties of the inverse problem are not well understood. Here we show that knowledge of the surface velocity field over the restoration period is crucial for the convergence rate of the restoration problem. With simple mantle convection models, and assuming for reference a given initial and final state, we explore the restoration problem in cases where knowledge of the surface velocity field over the restoration period is available relative to those where it is not. We find convergence of the inverse problem for time periods of \(\sim \)1/3 of a transit time and corresponding to about 50 million years in the Earth’s mantle, if the surface velocity field is known, while it diverges otherwise. For the Earth’s mantle the history of the surface velocity field is known for time periods of \(\sim \)1/2 transit times from reconstructions of past plate motion. Our results suggest that this constraint is of key importance in any attempt to restore past mantle structure.

Keywords

Mantle circulation Inverse problem Adjoint method Regularisation 

JEL Classification

C61 

Notes

Acknowledgments

The work of the first author is supported by a Statoil research grant.

References

  1. Bunge, H.-P., Davies, J.H.: Tomographic images of a mantle circulation model. Geophys. Res. Lett. 28(1), 77–80 (2001)CrossRefGoogle Scholar
  2. Bunge, H.-P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152(2), 280–301 (2003)CrossRefGoogle Scholar
  3. Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379(6564), 436–438 (1996)CrossRefGoogle Scholar
  4. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L.C., Tan, E., Gurnis, M., Ghattas, O.: Large-scale adaptive mantle convection simulation. Geophys. J. Int. 192(3), 889–906 (2013)CrossRefGoogle Scholar
  5. Busse, F., Richards, M., Lenardic, A.: A simple model of high Prandtl and high Rayleigh number convection bounded by thin low-viscosity layers. Geophys. J. Int. 164(1), 160–167 (2006)CrossRefGoogle Scholar
  6. Christensen, U.R., Yuen, D.A.: Layered convection induced by phase transitions. J. Geophys. Res.: Solid Earth (1978–2012), 90(B12):10291–10300 (1985)Google Scholar
  7. Cloetingh, S., Ziegler, P., Bogaard, P., Andriessen, P., Artemieva, I., Bada, G., Van Balen, R., Beekman, F., Ben-Avraham, Z., Brun, J.-P., et al.: Topo-Europe: the geoscience of coupled deep Earth-surface processes. Glob. Planet. Change 58(1), 1–118 (2007)CrossRefGoogle Scholar
  8. Davies, G.F.: Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge University Press, Cambridge (2000)Google Scholar
  9. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer, Berlin (1996)Google Scholar
  10. Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology: I. theory. Phys. Earth Planet. Interiors 157(1), 86–104 (2006a)CrossRefzbMATHGoogle Scholar
  11. Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology: II. applications: traveltimes and sensitivity functionals. Phys. Earth Planet. Interiors 157(1), 105–123 (2006b)CrossRefzbMATHGoogle Scholar
  12. Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J., Lhuillier, F.: An introduction to data assimilation and predictability in geomagnetism. Space Sci. Rev. 155(1–4), 247–291 (2010)CrossRefGoogle Scholar
  13. Giles, M.B., Pierce, N.A.: Adjoint equations in CFD: duality, boundary conditions and solution behaviour. In: AIAA, paper A97–1850 (1997)Google Scholar
  14. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems. SIAM J. Sci. Comput., submitted (2013)Google Scholar
  15. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics (2002)Google Scholar
  16. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 13(49–52), 28 (1902)Google Scholar
  17. Hager, B.H., O’Connell, R.J.: Kinematic models of large-scale flow in the Earth’s mantle. J. Geophys. Res. 84(B3), 1031–1048 (1979)CrossRefGoogle Scholar
  18. Hager, B.H., O’Connell, R.J.: A simple global model of plate dynamics and mantle convection. J. Geophys. Res.: Solid Earth (1978–2012), 86(B6):4843–4867 (1981)Google Scholar
  19. Ismail-Zadeh, A., Schubert, G., Tsepelev, I., Korotkii, A.: Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys. Earth Planet. Interiors 145(1–4), 99–114 (2004)CrossRefGoogle Scholar
  20. Jarvis, G.T., Mckenzie, D.P.: Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech. 96(03), 515–583 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  21. Kelley, C.T.: Iterative Methods for Optimization, vol. 18. SIAM (1999)Google Scholar
  22. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, vol. 120. Springer, Berlin (2011)Google Scholar
  23. Ladyzhenskaya, O., Solonnikov, V., Ural’tseva, N.: Linear and Quasilinear Parabolic Equations [in russian] (1967)Google Scholar
  24. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, vol. 76. Gordon and Breach, New York (1969)Google Scholar
  25. Lenardic, A., Richards, M., Busse, F.: Depth-dependent rheology and the horizontal length scale of mantle convection. J. Geophys. Res.: Solid Earth (1978–2012), 111(B7), B07404 (2006). doi: 10.1029/2005JB003639
  26. Liu, L., Gurnis, M.: Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J. Geophys. Res. 113(B8), B08405 (2008). doi: 10.1029/2008JB005594
  27. Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The Fenics Book, vol. 84. Springer, Berlin (2012)Google Scholar
  28. McNamara, A.K., Zhong, S.: Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437(7062), 1136–1139 (2005)CrossRefGoogle Scholar
  29. Mitrovica, J., Forte, A.: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett. 225(1), 177–189 (2004)CrossRefGoogle Scholar
  30. Ricard, Y., Richards, M., Lithgow-Bertelloni, C., Le Stunff, Y.: A geodynamic model of mantle density heterogeneity. J. Geophys. Res.: Solid Earth (1978–2012), 98(B12):21895–21909 (1993)Google Scholar
  31. Richards, M.A., Engebretson, D.C.: Large-scale mantle convection and the history of subduction. Nature 355(6359), 437–440 (1992)CrossRefGoogle Scholar
  32. Richards, M.A., Yang, W.-S., Baumgardner, J.R., Bunge, H.-P.: Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst. 2(8), 1026 (2001). doi: 10.1029/2000GC000115
  33. Ritsema, J., McNamara, A.K., Bull, A.L.: Tomographic filtering of geodynamic models: impications for model interpretation and large-scale mantle structure. J. Geophys. Res.: Solid Earth (1978–2012), 112(B1) B01303 (2007). doi: 10.1029/2006J B004566
  34. Schuberth, B., Bunge, H.-P., Ritsema, J.: Tomographic filtering of high-resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst. 10(5):Q05W03 (2009a)Google Scholar
  35. Schuberth, B., Bunge, H.-P., Steinle-Neumann, G., Moder, C., Oeser, J.: Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: high plume excess temperatures in the lowermost mantle. Geochem. Geophys. Geosyst. 10(1), Q01W01 (2009b). doi: 10.1029/2008GC002235
  36. Serrin, J.: Mathematical principles of classical fluid mechanics. In: Fluid Dynamics I/Strömungsmechanik I, pp. 125–263. Springer, Berlin (1959)Google Scholar
  37. Seton, M., Müller, R., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., et al.: Global continental and ocean basin reconstructions since 200ma. Earth-Sci. Rev. 113(3), 212–270 (2012)CrossRefGoogle Scholar
  38. Spasojevic, S., Liu, L., Gurnis, M.: Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous. Geochem. Geophys. Geosyst. 10(5), Q05W02 (2009). doi: 10.1029/2008GC002345
  39. Tackley, P.J.: Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res. 101(B2), 3311–3332 (1996)CrossRefGoogle Scholar
  40. Tackley, P.J.: Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Sci. Rev. 110(1), 1–25 (2012)CrossRefGoogle Scholar
  41. Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the adjoint vorticity equation. i: theory. Q. J. R. Meteorol. Soc. 113(478), 1311–1328 (1987)CrossRefGoogle Scholar
  42. Tarantola, A.: Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8), 1259–1266 (1984)CrossRefGoogle Scholar
  43. Tromp, J., Tape, C., Liu, Q.: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160(1), 195–216 (2005)CrossRefGoogle Scholar
  44. Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge University Press, Cambridge (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Simula Research LaboratoryLysakerNorway
  2. 2.Ludwig Maximilians UniversityMunichGermany

Personalised recommendations